Skip to main content
Log in

Phase transformations in thermally exposed Au-Al ball bonds

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gold-aluminum ball bonds were thermally exposed at constant elevated temperatures, and the resultant phase transformations studied in detail. The as-bonded microstructure of a Au-Al ball bond essentially consisted of a reaction zone (termed “alloyed zone” (AZ) in the as-bonded condition) between the Au bump and the bonded Al metallization. It is the growth of the reaction zone between the Au bump and the bonded Al metallization and also the nonbonded Al metallization during thermal exposure that gave rise to the various phase transformations. Au4Al, Au8Al3, and Au2Al are the predominant phases that grew across the ball bond until the bonded Al metallization is available to take part in the interdiffusion reactions. After the complete consumption of the bonded Al metallization, the Au-Al phases reverse transformed resulting in the formation of the Au4Al phase in the entire reaction zone across the ball bond (RZ-A). The lateral interdiffusion reactions resulted in the nucleation and the growth of all of the Au-Al phases given by the phase diagram. Kidson’s analysis and Tu et al.’s treatment were extended to a five-phase binary system to explain the phase transformations in thermally exposed Au-Al ball bonds. It is possible for all of the Au-Al phases to grow across a ball bond uninhibited as long as the bonded metallization is available. However, the supply limitation of the bonded metallization gives rise to reverse transformations where Al-rich phases transform to Au-rich phases and eventually result in the formation of the Au4Al phase in the entire RZ-A. If infinite time is allowed, Au4Al would dissolve; the extent of which is dependent on the solubility of Al in Au. No supply of Au lateral to the bond causes the reverse transformation of the Au4Al phase, giving rise to the lateral growth of the remaining Au-Al phases. If infinite time is allowed, the lateral phase transformations would result in the formation of a phase that is dependant on the relative proportion of Au and Al present in the nonbonded metallization (NBM) and Au4Al below the void line. Hence, the presence of a phase in a particular location of a ball bond is dependent on the time and temperature of thermal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weaver and L.C. Brown, Philos. Mag. 7, 1 (1962).

    CAS  Google Scholar 

  2. D.P. Kolesnikov, A.F. Andrushko, and Y. Sukhinina, Fizika Metallurgica 34, 529 (1972).

    CAS  Google Scholar 

  3. R.A. Fouracre, Thin Solid Films 135, 189 (1986).

    Article  CAS  Google Scholar 

  4. M.H. Francombe, A.J. Noreika, and W.J. Takei, Thin Solid Films 1, 353 (1967–1968).

    Article  Google Scholar 

  5. W.J. Takei and M.H. Francombe, Solid State Electron. 11, 205 (1968).

    Article  Google Scholar 

  6. E. Philofsky, Solid State Electron. 13, 1391 (1970).

    Article  CAS  Google Scholar 

  7. S.U. Campisano, G. Foti, E. Rimini, S.S. Lau, and J.W. Mayer, Philos. Mag. 31, 903 (1975).

    CAS  Google Scholar 

  8. G. Majni, C. Nobili, G. Ottaviani, and M. Costato, J. Appl. Phys. 52, 4047 (1981).

    Article  CAS  Google Scholar 

  9. G. Majni, C. Nobili, G. Ottaviani, and M. Costato, J. Cryst. Growth 47, 583 (1979).

    Article  CAS  Google Scholar 

  10. I.A. Blech and H. Sello, J. Electrochem. Soc. 113, 1052 (1996).

    Google Scholar 

  11. T. Uno and K. Tatsumi, J. Jpn. Inst. Met. 63, 828 (1999).

    CAS  Google Scholar 

  12. M. Kashiwabara and S. Hattori, Rev. Electric. Comm. Lab. 17, 1001 (1969).

    Google Scholar 

  13. V. Koeninger, H.H. Uchida, and E. Fromm, IEEE Trans. Comp., Hybrids Manufacturing Technol. 18, 835 (1995).

    Article  CAS  Google Scholar 

  14. L. Maiocco, D. Smyers, S. Kadiyala, and I. Baker, Mater. Charact. 24, 293 (1990).

    Article  CAS  Google Scholar 

  15. R.A. Clarke and V. Lukatela, Int. J. Microcircuits Electron. Packaging 15, 87 (1992).

    Google Scholar 

  16. G.V. Clatterbaugh, J.A. Weiner, and K. Charles, Jr., IEEE Trans. Comp., Hybrids Manufacturing Technol. 7, 349 (1984).

    Article  Google Scholar 

  17. K. Dittmer, S. Kumar, and F. Wulff, Int. Conf. on High Density Packaging and MCMs (Reston, VA: SPIE, 1999), pp. 403–408.

    Google Scholar 

  18. N.J. Noolu (Ph.D. dissertation, The Ohio State University, 2001).

  19. G.V. Kidson, J. Nucl. Mater. 3, 21 (1961).

    Article  CAS  Google Scholar 

  20. K.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists (New York: Macmillan Publishing Company, 1992).

    Google Scholar 

  21. K.N. Tu, G. Ottaviani, U. Gosele, and H. Foll, J. Appl. Phys. 54, 758 (1983).

    Article  CAS  Google Scholar 

  22. K.N. Tu, Advances in Electronic Materials, ASM Materials Science Seminar (Metals Park: OH, ASM, 1984) p. 147.

    Google Scholar 

  23. J. Phase Equilibria 12, 11 (1991).

  24. T.B. Massalski, ed., Binary Alloy Phase Diagrams (Materials Park, OH: ASM International, 1995).

    Google Scholar 

  25. A.D. Smigelskas and E.O. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  26. T. Ramsey, C. Alfaro, and H. Dowell, Semicond. Int. 4, 7 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noolu, N., Murdeshwar, N., Ely, K. et al. Phase transformations in thermally exposed Au-Al ball bonds. J. Electron. Mater. 33, 340–352 (2004). https://doi.org/10.1007/s11664-004-0141-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0141-7

Key words

Navigation