Skip to main content
Log in

Investigation of MBE-Growth of Mid-Wave Infrared Hg1−xCdxSe

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 11 September 2018

This article has been updated

Abstract

Undoped mid-wave infrared Hg1−xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6 × 104 cm2 V−1 s−1 at 130 K), minority carrier lifetime (∼ 2 μs at 130 K), and background n-type doping (∼ 3 × 1016 cm−3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 11 September 2018

    In the original article, G. A. Umana-Membreno’s name is incorrect. It is corrected as reflected here.

References

  1. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  Google Scholar 

  2. A. Rogalski, J. Antoszewski, and L. Faraone, J. App. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  3. W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  4. R.N. Jacobs, M. Jaime Vasquez, C.M. Lennon, C. NozakiL, A. Almeida, J. Pellegrino, J. Arias, C. Taylor, and B. Wissman, J. Electron. Mater. 44, 3076 (2015).

    Article  Google Scholar 

  5. S.D. Chen, L. Lin, X.Z. He, Z.Y. Xu, C.P. Luo, and J.Z. Xu, J. Cryst. Growth 140, 287 (1994).

    Article  Google Scholar 

  6. D.J. Smith, S.C.Y. Tsen, D. Chandrasekhar, P.A. Crozier, S. Rujirawat, G. Brill, Y.P. Chen, R. Sporken, and S. Sivananthan, Mater. Sci. Eng. B77, 93 (2000).

    Article  Google Scholar 

  7. M. Carmody, J.G. Pasko, D. Edwall, E. Piquette, M. Kangas, S. Freeman, J. Arias, R. Jacobs, W. Mason, A. Stoltz, Y. Chen, and N.K. Dhar, J. Electron. Mater. 37, 9 (2008).

    Article  Google Scholar 

  8. R. Gu, W. Lei, J. Antoszewski, I. Madni, G. Umana-Menbreno, and L. Faraone, in Proceedings of SPIE 9819, Infrared Technology and Applications, XLII, 98191Z (2016).

  9. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, G. Neusser, M. Sieger, B. Mizaikoff, and L. Faraone, J. Electron. Mater. 44, 9 (2015).

    Google Scholar 

  10. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).

    Article  Google Scholar 

  11. I. Madni, G. A. Umana-Membreno, W. Lei, R. Gu, J. Antoszewski, and L. Faraone, J. Cryst. Res. Technol. 1700167, 1 (2017).

  12. C.R. Whitsett, J.G. Broerman, and C.J. Summers, Semiconductor and Semimetals (Cambridge: Academic Press, 1981), vol. 16, p. 53.

  13. Y. Lansari, J.W. Cook, and J.F. Schetzina, J. Electron. Mater. 22, 8 (1993).

    Article  Google Scholar 

  14. K. Doyle, C.H. Swartz, and J.H. Dinan, J. Vac. Sci. Technol. B 31, 3 (2013).

    Article  Google Scholar 

  15. C.J. Summers and J.G. Broerman, Phys. Rev. B 21, 559 (1980).

    Article  Google Scholar 

  16. S. Weng and M. Cocivera, Chem. Mater. 4, 615 (1992).

    Article  Google Scholar 

  17. N. Matsumura, T. Sakamoto, and J. Saraie, J. Cryst. Growth 251, 602 (2003).

    Article  Google Scholar 

  18. G.A. Umana-Membreno, J. Antoszewski, L. Faraone, E.P.G. Smith, G.M. Venzor, S.M. Johnson, and V. Phillips, J. Electron. Mater. 39, 1023 (2010).

    Article  Google Scholar 

  19. J.D. Benson, L.A. Almeida, M.W. Carmody, D.D. Edwall, J.K. Markunas, R.N. Jacobs, M. Martinka, and U. Lee, J. Electron. Mater. 36, 949 (2007).

    Article  Google Scholar 

  20. M. Carmody, D. Lee, M. Zandian, J. Phillips, and J. Arias, J. Electron. Mater. 32, 710 (2003).

    Article  Google Scholar 

  21. P. Goldfinder and M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963).

    Article  Google Scholar 

  22. G. Brill, Y. Chen, and P. Wijewarnasuriya, J. Electron. Mater. 40, 8 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (FT130101708, DP170104562, and LE170100233), and a Research Collaboration Award from The University of Western Australia. Facilities used in this work are supported by the WA node of Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Madni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madni, I., Membreno, G.A.U., Lei, W. et al. Investigation of MBE-Growth of Mid-Wave Infrared Hg1−xCdxSe. J. Electron. Mater. 47, 5691–5698 (2018). https://doi.org/10.1007/s11664-018-6565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6565-2

Keywords

Navigation