Skip to main content
Log in

Development of the high-pressure electro-dynamic gradient crystal-growth technology for semi-insulating CdZnTe growth for radiation detector applications

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on large-diameter (140 mm), SI Cd1−xZnxTe (x=0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (≥1cm3) with electron mobility-lifetime product (μτe) in the (3–7) × 10−3 cm2/V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. James, T.E. Schlesinger, J. Lund, and M. Schieber, Semiconductors and Semimetals, Vol. 43 (Academic Press, New York, 1997), pp. 335–381.

    Google Scholar 

  2. K.B. Parnham, Nucl. Instr. Meth. A377, 487 (1996).

    Google Scholar 

  3. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R32, 103 (2001).

    CAS  Google Scholar 

  4. C. Szeles, W.C. Chalmers, S.C. Cameron, J.-O. Ndap, M. Bliss, and K.G. Lynn, Proc. SPIE 4507, 57 (2001).

    Article  CAS  Google Scholar 

  5. M. Fiederle, V. Babentsov, J. Franc, A. Fauler, and J.-P. Konrath, Cryst. Res. Technol. 38, 588 (2003).

    Article  CAS  Google Scholar 

  6. E. Raiskin and J.F. Butler, IEEE Trans. Nucl. Sci. NS-35, 81 (1988).

    Article  Google Scholar 

  7. F.P. Doty, J.F. Butler, J.F. Schetzina, and K.A. Bowers, J. Vac. Sci. Technol. B 10, 1418 (1992).

    Article  CAS  Google Scholar 

  8. C. Szeles and E.E. Eissler, MRS Symp. Proc. 487, 3 (1998).

    CAS  Google Scholar 

  9. Saint-Gobain Crystals and Detectors (formerly Bicron), Solon, OH.

  10. Imarad Imaging Systems, Israel. See also T.E. Schlesinger et al., J. Electron. Mater. 28, 864 (1999).

    Article  CAS  Google Scholar 

  11. Acrorad, Okinawa, Japan and Eurorad, Strasbourg, France.

  12. Yinnel Tech, South Bend. IN. See also L. Li et al., Proc. SPIE 4784, 76 (2003).

    Article  Google Scholar 

  13. Fermionics Corp., Simi Valley, CA. See also M. Chu, S. Terterian, D. Ting, R.B. James, M. Szawlowski, and G.J. Visser, Proc. SPIE 4784, 237 (2003).

    Article  Google Scholar 

  14. J.M. Parsey, Jr. and F.A Thiel, J. Cryst. Growth 73, 211 (1985).

    Article  CAS  Google Scholar 

  15. Cape Simulations, Newton, MA, www.capesim.com

  16. C. Parfeniuk, F. Weinberg, I.V. Samarasekara, C. Schvezov, and L. Li, J. Cryst. Growth 119, 261 (1992).

    Article  CAS  Google Scholar 

  17. P. Rudolph, Progr. Cryst. Growth Characterization 29, 275 (1994).

    Article  CAS  Google Scholar 

  18. P. Rudolph and M. Mühlberg, Mater. Sci. Eng. B16, 8 (1993).

    Article  CAS  Google Scholar 

  19. J.H. Greenberg, V.N. Guskov, V.B. Lazarev, and O.V. Shebershneva, J. Solid State Chem. 102, 382 (1993).

    Article  CAS  Google Scholar 

  20. J. Shen, D.K. Aidun, L. Regel, and W.R. Wilcox, J. Cryst. Growth 132, 250 (1993).

    Article  CAS  Google Scholar 

  21. J.R. Heffelfinger, D.L. Medlin, and R.B. James, MRS Symp. Proc. 487, 33 (1997).

    Google Scholar 

  22. M. Amman, J.S. Lee, and P.N. Luke, Proc. SPIE 4507, 1 (2001).

    Article  CAS  Google Scholar 

  23. M. Amman, J.S. Lee, and P.N. Luke, J. Appl. Phys. 92, 3198 (2002).

    Article  CAS  Google Scholar 

  24. N. Krsmanovic, K.G. Lynn, M.H. Weber, R. Tjossem, S.A. Awadalla, C. Szeles, J.P. Flint, and H.L. Glass, Proc. SPIE. 4141, 219 (2000).

    Article  CAS  Google Scholar 

  25. C. Szeles, S.C. Cameron, J.-O. Ndap, and W.C. Chalmers, IEEE Trans Nucl. Sci. 49, 2535 (2002).

    Article  CAS  Google Scholar 

  26. P.N. Luke, Appl. Phys. Lett. 65, 2884 (1994).

    Article  CAS  Google Scholar 

  27. H.H. Barrett, J.D. Eskin, and H.B. Barber, Phys. Rev. Lett. 75, 156 (1995).

    Article  CAS  Google Scholar 

  28. A. Shor, Y. Eisen, and I. Mardor, Nucl. Instr. Meth. A 428, 182 (1999).

    Article  CAS  Google Scholar 

  29. K. Hecht, Z. Phys. 77, 235 (1932).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeles, C., Cameron, S.E., Soldner, S.A. et al. Development of the high-pressure electro-dynamic gradient crystal-growth technology for semi-insulating CdZnTe growth for radiation detector applications. J. Electron. Mater. 33, 742–751 (2004). https://doi.org/10.1007/s11664-004-0076-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0076-z

Key words

Navigation