Skip to main content

Seeded Crystal Growth of Cd-Zn-Te (CZT) Assisted via Numerical Modelling

  • Chapter
  • First Online:
Emerging Materials

Abstract

Cd-Zn-Te/CdTe is material of choice for room temperature X-ray and gamma-ray detector applications, spanning security, medical and astronomical imaging. However, potential applications of this material are limited by unfavorable thermo-physical properties that make the crystal growth of large volume material challenging (particularly at faster growth rates). This chapter provides an overview of an attempt to develop a potential alternate growth method capable of growing large volume material at faster growth rates (2 mm/h), without the need for post processing. The growth technique discussed involves seeding in combination with the accelerated crucible rotation technique (ACRT). Successful seeding is accomplished by modifying the heat sink setup in an electro-dynamic gradient (EDG) furnace, and the effects of different heat sink configurations are discussed. Repeatability of seeding is also discussed along with the effect of initializing ACRT on tellurium inclusion distribution and grain structure. The propagation of grain structure along the crystal is demonstrated by consecutive crystal growth experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Brown, Theory of transport processes in single crystal growth from the melt. AIChE. J. 34(6), 881–911. John Wiley & Sons, Ltd (1988). https://doi.org/10.1002/aic.690340602

  2. P. Rudolph, Transport phenomena of crystal growth—heat and mass transfer. AIP Conf. Proc. 1270(1), 107–132 (2010). https://doi.org/10.1063/1.3476222

    Article  ADS  Google Scholar 

  3. W. R. Wilcox, Transport phenomena in crystal growth from solution. Prog. Cryst. Growth Charact. Mater. 26(C), 153–194 (1993). https://doi.org/10.1016/0960-8974(93)90014-U

  4. J. Zhou, M. Larrousse, W.R. Wilcox, L.L. Regel, Directional solidification with ACRT. J. Cryst. Growth 128(1–4), 173–177 (1993). https://doi.org/10.1016/0022-0248(93)90314-M

    Article  ADS  Google Scholar 

  5. P.W. Bridgman, Some properties of single metal crystals. Proc. Natl. Acad. Sci. 10(10), 411–415 (1924). https://doi.org/10.1073/pnas.10.10.411

    Article  ADS  Google Scholar 

  6. D.C. Stockbarger, The production of large single crystals of lithium fluoride. Rev. Sci. Instrum. 7, 133 (1936). https://doi.org/10.1063/1.1752094

    Article  ADS  Google Scholar 

  7. A. Datta, K. A. Jones, S. Swain, K. G. Lynn, Modified vertical bridgman growth of Cd1−xZnxTe detector grade crystal in a 4 inch EDG furnace, in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp 1771–1776 (2009). https://doi.org/10.1109/NSSMIC.2009.5402202

  8. H.J. Scheel, E.O. Schulz-Dubois, Flux growth of large crystals by accelerated crucible-rotation technique. J. Cryst. Growth 8(3), 304–306 (1971)

    Article  ADS  Google Scholar 

  9. J.J. McCoy, S. Kakkireni, Z.H. Gilvey, S.K. Swain, A.E. Bolotnikov, K.G. Lynn, Overcoming mobility lifetime product limitations in vertical bridgman production of cadmium zinc telluride detectors. J. Electron. Mater. 48(7), 4226–4234 (2019). https://doi.org/10.1007/s11664-019-07196-5

    Article  ADS  Google Scholar 

  10. M. Saleh, S. Kakkireni, J. McCloy, K.G. Lynn, Improved Nd distribution in Czochralski grown YAG crystals by implementation of the accelerated crucible rotation technique. Opt. Mater. Express 10(2), 632 (2020). https://doi.org/10.1364/ome.380174

    Article  ADS  Google Scholar 

  11. A.E. Bolotnikov et al., Effects of Te inclusions on the performance of CdZnTe radiation detectors. IEEE Trans. Nucl. Sci. 55(5), 2757–2764 (2008). https://doi.org/10.1109/TNS.2008.2003355

    Article  ADS  Google Scholar 

  12. L. Lun, A. Yeckel, M. Reed, C. Szeles, P. Daoutidis, J.J. Derby, On the effects of furnace gradients on interface shape during the growth of cadmium zinc telluride in EDG furnaces. J. Cryst. Growth 290(1), 35–43 (2006). https://doi.org/10.1016/j.jcrysgro.2006.01.006

    Article  ADS  Google Scholar 

  13. A. Reisman, R. Rohr, Room temperature chemical polishing of Ge and GaAs. J. Electrochem. Soc. 111(12), 1425 (1964). https://doi.org/10.1149/1.2426020

    Article  ADS  Google Scholar 

  14. S. Kuppurao, J.J. Derby, Designing thermal environments to promote convex interface shapes during the vertical Bridgman growth of cadmium zinc telluride. J. Cryst. Growth 172(3–4), 350–360 (1997). https://doi.org/10.1016/S0022-0248(96)00756-7

    Article  ADS  Google Scholar 

  15. M.S. Divecha, J.J. Derby, Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride. J. Cryst. Growth 468, 630–634 (2017). https://doi.org/10.1016/j.jcrysgro.2016.09.068

    Article  ADS  Google Scholar 

  16. V. Carcelén et al., Influence of thermal environments on the growth of bulk cadmium zinc telluride (CZT) single crystals. J. Cryst. Growth. 311(5), 1264–1267 (2009) https://doi.org/10.1016/j.jcrysgro.2009.01.100

  17. P. Rudolph, M. Mühlberg, Basic problems of vertical Bridgman growth of CdTe. Mater. Sci. Eng. B 16(1–3), 8–16 (1993)

    Article  Google Scholar 

  18. R. S. Feigelson, R. R. Route, Improved techniques for the growth of high quality cadmium telluride crystals. Stanford Univ Ca Center for Materials Research (1985)

    Google Scholar 

  19. https://www.str-soft.com/software/cgsim/

  20. Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering. J. Asian Ceram. Soc. 6(1), 95–101 (2018)

    Article  Google Scholar 

  21. U.N. Roy et al., Size and distribution of Te inclusions in THM as-grown CZT wafers: the effect of the rate of crystal cooling. J. Cryst. Growth 332(1), 34–38 (2011). https://doi.org/10.1016/j.jcrysgro.2011.07.025

    Article  ADS  Google Scholar 

  22. L. Xu et al., Concentration of extended defects in CdZnTe single crystals: effects of cooling rate after growth. J. Cryst. Growth 355(1), 84–87 (2012). https://doi.org/10.1016/j.jcrysgro.2012.06.024

    Article  ADS  Google Scholar 

  23. C. Minnal, Development of versatile control system for control of crystal growth furnace and ancillary systems using national instruments® Devices And Labview® Program (2010)

    Google Scholar 

  24. P. Rudolph, H.J. Koh, N. Schäfer, T. Fukuda, The crystal perfection depends on the superheating of the mother phase too—experimental facts and speculations on the ‘melt structure’ of semiconductor compounds. J. Cryst. Growth 166(1–4), 578–582 (1996). https://doi.org/10.1016/0022-0248(96)00119-4

    Article  ADS  Google Scholar 

  25. V. Carcelén et al., New approaches in order to enlarge the grain size of bulk CdZnTe (CZT) crystals. J. Optoelectron. Adv. Mater. 10(11), 3135–3140 (2008)

    Google Scholar 

  26. J. Crocco, H. Bensalah, Q. Zheng, V. Carcelén, E. Diéguez, Influence of SiC pedestal in the growth of 50 mm CZT by Vertical gradient freeze method. J. Cryst. Growth 360(1), 92–94 (2012). https://doi.org/10.1016/j.jcrysgro.2011.11.047

    Article  ADS  Google Scholar 

  27. https://www.zrci.com/wdpr/wp-content/uploads/2018/09/ZRCI-0001-Rev-6-9-21-1.pdf

  28. A. Sher, A. Chen, W. E. Spicer, C. Shih, Effects influencing the structural integrity of semiconductors and their alloys. J. Vac. Sci. Technol. Vac. Surf. Film. 3(1), 105–111 (1985). https://doi.org/10.1116/1.573177

  29. J.L. Reno, E.D. Jones, Determination of the dependence of the band-gap energy on composition for Cd1-xZnxTe. Phys. Rev. B 45(3), 1440–1442 (1992). https://doi.org/10.1103/PhysRevB.45.1440

    Article  ADS  Google Scholar 

  30. Y. Xu et al., Characterization of CdZnTe crystals grown using a seeded modified vertical bridgman method. IEEE Trans. Nucl. Sci. 56(5), 2808–2813 (2009). https://doi.org/10.1109/TNS.2009.2026277

    Article  ADS  Google Scholar 

  31. W.A.N.G. Tao et al., Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques. Trans. Nonferrous Metals Soc. China 19, s622–s625 (2009). https://doi.org/10.1016/S1003-6326(10)60120-3

    Article  Google Scholar 

  32. T. Wang, W. Q. Jie, Y. D. Xu, G. Q. Zha, L. Fu, Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques. Trans. Nonferrous Met. Soc. China (English Ed.)19(3), s622–s625 (2009). https://doi.org/10.1016/S1003-6326(10)60120-3

  33. S. K. Swain, S. Kumar, Large volume single crystal growth of cadmium zinc telluride with minimal secondary phases for room temperature radiation detector application. PhD (2011). https://ui.adsabs.harvard.edu/abs/2011PhDT.......358S/abstract

  34. C. Niedermeier, M. Råsander, S. Rhode et al., Band gap bowing in NixMg1−xO. Sci Rep 6, 31230 (2016). https://doi.org/10.1038/srep31230

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Crystal growth efforts performed as part of this work are dedicated to late Professor Kelvin G. Lynn (1948–2020), who initiated and supervised Cd-Zn-Te research at WSU. The authors acknowledge former PhD students Dr. Jedidiah McCoy and Dr. Amlan Datta for helping in many way during the Ph.D. work of SK. We thank the members of IMR, WSU, Jasdeep Singh, and Becky Griswold for their assistance. We acknowledge the input provided by Dr. Mia Divecha, and Prof. Jeff Derby of the University of Minnesota towards implementing ACRT at WSU. Authors would also like to acknowledge the feedback provided by Dr. Aleksey Bolotnikov of Brookhaven National Laboratory. This work was supported by US Department of Energy—DE-SC0020023 STTR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McCloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakkireni, S., Murugesan, M., Montag, B., McCloy, J. (2022). Seeded Crystal Growth of Cd-Zn-Te (CZT) Assisted via Numerical Modelling. In: Thoutam, L.R., Tayal, S., Ajayan, J. (eds) Emerging Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1312-9_3

Download citation

Publish with us

Policies and ethics