Skip to main content
Log in

Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermal annealing behavior of Cu films containing insoluble 2.0 at. % Mo magnetron co-sputtered on Si substrates is discussed in the present study. The Cu-Mo films were vacuum annealed at temperatures ranging from 200°C to 800°C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) observations have shown that Cu4Si was formed at 530°C, whereas pure Cu film exhibited Cu4Si growth at 400°C. Twins are observed in focused ion beam (FIB) images of as-deposited and 400°C annealed, pure Cu film, and these twins result from the intrinsically low stacking-fault energy. Twins appearing in pure Cu film may offer an extra diffusion channel during annealing for copper silicide formation. In Cu-Mo films, the shallow diffusion profiles for Cu into Si were observed through secondary ion mass spectroscopy (SIMS) analysis. Higher activation energy obtained through differential scanning calorimetry (DSC) analysis for the formation of copper silicide further confirms the beneficial effect of Mo on the thermal stability of Cu film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Li, R.S. Blewer, T.E. Seidel, and J.W. Mayer, MRS Bull. 18, 6 (1993); 19, 8 (1994).

    Google Scholar 

  2. G. Raghavan, C. Chiang, P.B. Anders, S.M. Tzeng, R. Villasol, G. Bai, M. Bohr, and M. Fraser, Thin Solid Films 262, 168 (1995).

    Article  CAS  Google Scholar 

  3. S.M. Sze, VLSI Technology, 2nd ed. (New York: John Wiley, 1988), pp. 308–309.

    Google Scholar 

  4. S.Q. Wang, S. Suthar, C. Hoeflich, and B.J. Burrow, J. Appl. Phys. 73, 2301 (1993).

    Article  CAS  Google Scholar 

  5. J. Echigoya, H. Enoki, T. Satoh, T. Ohmi, M. Otsuki, and T. Shibata, Appl. Surf. Sci. 56–58, 463 (1992).

    Article  Google Scholar 

  6. C.S. Liu and L.J. Chen, J. Appl. Phys. 74, 5501 (1993).

    Article  CAS  Google Scholar 

  7. C.A. Chang, J. Appl. Phys. 67, 6184 (1990).

    Article  CAS  Google Scholar 

  8. D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, and J. Cataldo, J. Appl. Phys. 70, 3052 (1991).

    Article  CAS  Google Scholar 

  9. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett. 64, 1511 (1994).

    Article  CAS  Google Scholar 

  10. L.C. Lane, T.C. Nason, G.R. Yang, T.M. Lu, and H. Bakhru, J. Appl. Phys. 69, 6719 (1991).

    Article  CAS  Google Scholar 

  11. K.-L. Lin and Y.-J. Ho, J. Vac. Sci. Technol. A 13, 2872 (1995).

    Article  Google Scholar 

  12. V.P. Anitha, S. Vitta, and S. Major, Thin Solid Films 245, 1 (1994).

    Article  CAS  Google Scholar 

  13. V.P. Anitha, S. Major, D. Chandrashekharam, and M. Bhatnagar, Surf. Coating Technol. 79, 50 (1996).

    Article  CAS  Google Scholar 

  14. J.P. Chu, C.H. Chung, P.Y. Lee, J.M. Rigsbee, and J.Y. Wang, Metall. Mater. Trans. A 29A, 647 (1998).

    Article  CAS  Google Scholar 

  15. J.P. Chu, C.J. Liu, C.H. Lin, and S.F. Wang, Mater. Chem. Phys. 72, 286 (2001).

    Article  CAS  Google Scholar 

  16. J.P. Chu and T.N. Lin, J. Appl. Phys. 85, 6462 (1999).

    Article  CAS  Google Scholar 

  17. For example, R.D. Shull and A. Joshi, eds., Proc. of the Thermal Analysis in Metallurgy (Warrendale, PA: TMS, 1992), pp. 300–304.

    Google Scholar 

  18. R.R. Chromik, W.K. Neils, and E.J. Cotts, J. Appl. Phys. 86, 4273 (1999).

    Article  CAS  Google Scholar 

  19. C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, and C. Sambucetti, Appl. Phys. Lett. 81, 1782 (2002).

    Article  CAS  Google Scholar 

  20. D. Verkleij and C. Mulders, Micron 30, 227 (1999).

    Article  CAS  Google Scholar 

  21. K.-M. Chang, T.-H. Yeh, I.-C. Deng, and C.-W. Shih, J. Appl. Phys. 82, 1469 (1997).

    Article  CAS  Google Scholar 

  22. P.G. Shewmon, Diffusion in Solids, 2nd ed. (New York: McGraw-Hill, 1963), pp. 116–117.

    Google Scholar 

  23. J.P. Chu, I.J. Hsieh, J.T. Chen, and M.S. Feng, Mater. Chem. Phys. 53, 172 (1998).

    Article  CAS  Google Scholar 

  24. C.H. Lin, J.P. Chu, T. Mahalingam, T.N. Lin, and S.F. Wang, J. Mater. Res. 18, 1429 (2003).

    CAS  Google Scholar 

  25. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  26. J.Z. Chen and S.K. Wu, Thin Solid Films 339, 194 (1999).

    Article  CAS  Google Scholar 

  27. J.P. Chu, S.F. Wang, S.J. Lee, and C.W. Chang, J. Appl. Phys. 88, 6086 (2000).

    Article  CAS  Google Scholar 

  28. E.F.C. Haddeman, B.S. Bunnik, and B.J. Thijsse, Materials Research Society Conf. (Warrendale, PA: Materials Research Society, 1999), pp. 103–108.

    Google Scholar 

  29. N. Benouattas, A. Mosser, D. Raiser, J. Faeber, and A. Bouabellou, Appl. Surf. Sci. 153, 79 (2000).

    Article  CAS  Google Scholar 

  30. C. Minkwitz, CHR. Herzig, E. Rabkin, and W. Gust, Acta Mater. 47, 1231 (1999).

    Article  CAS  Google Scholar 

  31. B.B. Rath, M.A. Imam, and C.S. Pande, Mater. Phys. Mech. 1, 61 (2000).

    CAS  Google Scholar 

  32. R.E. Smallman and R.J. Bishop, Modern Physical Metallurgy, 4th ed. (London: Butterworth, 1999), pp. 285–289.

    Google Scholar 

  33. S. Li, Z.L. Dong, K.M. Latt, and H.S. Park, Appl. Phys. Lett. 80, 2296 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C.H., Chu, J.P., Mahalingam, T. et al. Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study. J. Electron. Mater. 32, 1235–1239 (2003). https://doi.org/10.1007/s11664-003-0017-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0017-2

Key words

Navigation