Skip to main content
Log in

Phase Equilibria of the Ag–Cu–M (M = Nb, Fe, Pb) Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Sixteen alloys were prepared to determine the isothermal sections of the Ag–Cu–Nb system at 500, 600 and 700 °C using x-ray diffraction (XRD) and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDS). Based on the thermodynamic descriptions of constitutive binary systems as well as the experimental phase equilibria data obtained from the present work and literatures, the Ag–Cu–M (M = Nb, Fe, Pb) ternary systems were thermodynamically evaluated by the CALPHAD (CALculation of PHAse Diagrams) method. The solution phases were described by the substitutional solution model and a set of self-consistent thermodynamic parameters was finally obtained for each of the ternary systems. The calculated isothermal sections are in good agreement with most of the reliable experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Choi, S. Kwon, Y. Park, K. Kang, and M.H. Lee, In Silico High-Throughput Screening of Ag-Based Electrocatalysts for Anion-Exchange Membrane Fuel Cells, J. Phys. Chem. Lett., 2021, 12, p 5660–5667.

    Article  Google Scholar 

  2. T.A. Kassam, N.H. Babu, N. Ludford, S. Yan, and A. Howkins, Secondary Phase Interaction at Interfaces of High-Strength Brazed Joints Made Using Liquid Phase Sintered Alumina Ceramics and Ag–Cu–Ti Braze Alloys, Sci. Rep., 2018, 8, p 3352.

    Article  ADS  Google Scholar 

  3. X.X. Wang, J. Peng, D.T. Cui, P. Xue, H. Li, A.M. Hu, and G.Y. Sun, Research and Application of Silver-Based Brazing Alloys in Manufacturing Industries: A Review, Mater. Rep., 2018, 32, p 1477–1485.

    ADS  Google Scholar 

  4. Y. Zhang, B. Hu, G. Zeng, S.H. Liu, Y. Du, and H.Q. Yin, Experimental Investigation Thermodynamic Modeling and Solidified Microstructure of the Cu–Ti–Nb termary System, Calphad, 2022, 76, p 102395.

    Article  Google Scholar 

  5. Y. Zhang, B. Hu, B.F. Li, M. Zhang, Q.P. Wang, and Y. Du, Experimental Investigation CALPHAD Modeling of the Cu–Cr–Si Termary System, Calphad, 2021, 74, p 102324.

    Article  Google Scholar 

  6. Y. Zhang, B. Hu, Y.S. Shi, S.H. Liu, Y. Du, J.Q. Hu, Thermodynamic Modeling and Solidified Microstructure of the Ag–Sn–Zr Ternary System, T. Nonferr. Matel. Soc. (in press), 2022

  7. R. Kieffer, S. Windisch, and H. Nowotny, Niobium-Tantalum, Metall., 1963, 17, p 669.

    Google Scholar 

  8. M.R. Baren, The Ag–Nb (silver-niobium) System, Bull. Alloy Phase Diagr., 1989, 10, p 640.

    Article  Google Scholar 

  9. M. Aria, M. Tanaka, K.S. Goto, and M. Someno, Activity and Diffusivity Measurements of Copper in Gamma and Delta Fe by Equilibration between Solid Fe and liquid Ag, Metall. Mater. Trans. A, 1981, 12, p 497–504.

    Article  ADS  Google Scholar 

  10. G. Petzow, and G. Effenberg, Silver-Copper-Lead, J. Mater. Res., 1988, 2, p 1–13.

    Google Scholar 

  11. E. Lüder, Das Dreistoff-System, Silber-Kupfer-Eisen, Z. Metallkd., 1924, 16, p 61–62.

    Google Scholar 

  12. T. Klassen, U. Herr, and R.S. Averback, Mechanisms of Phase Formation during Milling in the Ternary Immiscible Ag–Cu–Fesystem, Mat. Res. Soc. Symp. Proc., 1995, 400, p 25–30.

    Article  Google Scholar 

  13. H.Y. Gao, J. Wang, D. Shu, and B.D. Sun, Effect of Ag on the Microstructure and Properties of Cu–Fe in Situ Composites, Scr. Mater., 2005, 53, p 1105–1109.

    Article  Google Scholar 

  14. Y.F. Wang, H.Y. Gao, J. Wang, Y.F. Han, Y.B. Dai, and B.D. Sun, First-Principles Calculation of Ag Addition on the Diffusion Mechanisms of Cu–Fe Alloys, Solid State Commun., 2014, 183, p 60–63.

    Article  ADS  Google Scholar 

  15. W.L. Jiang, C. Zhang, N. Xu, B. Yang, B.Q. Xu, D.C. Liu, and H.W. Yang, Experimental Investigation and Modelling of Phase Equilibria for the Ag–Cu–Pb System in Vacuum Distillation, Fluid Phase Equilib., 2016, 417, p 19–24.

    Article  Google Scholar 

  16. Z.K. Liu, and Y. Wang, Computational thermodynamics of materials. Cambridge University Press, New York, 2016.

    Book  Google Scholar 

  17. H. Lukas, S.G. Fries, and B. Sundman, Computational thermodynamics: the Calphad method. Cambridge University Press, New York, 2007.

    Book  MATH  Google Scholar 

  18. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317–425.

    Article  Google Scholar 

  19. X.C. He, H. Wang, H.S. Liu, and Z.P. Jin, Thermodynamic Description of the Cu–Ag–Zr System, Calphad, 2006, 30, p 367–374.

    Article  Google Scholar 

  20. J.Q. Zhou, B. Hu, Y. Jiang, C.L. Qiu, Y. Du, and H.Q. Yin, Thermodynamic Modeling of the Ag–X (X=B, Fe, Sm, Pu) Binary System, J. Phase Equilib. Diffus., 2020, 41, p 257–268.

    Article  Google Scholar 

  21. B.Z. Lee, C.S. Oh, and D.N. Lee, A thermodynamic Evaluation of the Ag–Pb–Sb System, J. Alloys Compd., 1994, 215, p 293–301.

    Article  Google Scholar 

  22. G.I. Terekhov, and L.N. Aleksandrova, The Copper–Niobium Phase Diagram, Izv. Akad. Nauk. SSSR. Met., 1984, 4, p 210–213.

    Google Scholar 

  23. I. Ansara, and A. Jansson, System Cu-Fe, in COST 507, Vol. 2. I. Ansara, A.T. Dinsdale, and M.H. Rand, Eds., European Communities, Brussels, 1998, p 165–167

    Google Scholar 

  24. B. Onderka, and L. Zabdyr, A New Critical Assessment of the Copper-Lead System, Scand. J. Metall., 2001, 30, p 320–323.

    Article  Google Scholar 

  25. O. Redlich, and A.T. Kister, Thermodynamics of Nonelectrolyte Solutions xy–t Relations in a Binary System, Ind. Chem. Phys., 1948, 40, p 341–345.

    Google Scholar 

  26. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723k - Choice of an Analytical Representation of Integral and Partial Thermodynamic Functions of Mixing for this Ternary-System, J. Chim. Phys. Phys. -Chim. Biol., 1975, 72, p 83–88.

    Article  ADS  Google Scholar 

  27. B. Sundman, and J. Agren, A Regular Solution Model for Phases with Several Components and Sublattices Suitable for Computer Applications, J. Phys. Chem. Solids, 1981, 42, p 297–301.

    Article  ADS  Google Scholar 

  28. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9, p 153–190.

    Article  Google Scholar 

Download references

Acknowledgments

The work support from the Major Science and Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province (No. 202002AB080001-1), the National Natural Science Foundation of China (No. 52071002) and the National Natural Science Foundation of Anhui Province (No. 2008085QE200) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Hu.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, B., Yin, H. et al. Phase Equilibria of the Ag–Cu–M (M = Nb, Fe, Pb) Systems. J. Phase Equilib. Diffus. 43, 533–546 (2022). https://doi.org/10.1007/s11669-022-00998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00998-x

Keywords

Navigation