Skip to main content
Log in

H2-based dry plasma etching for mesa structuring of HgCdTe

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An experimental study has been carried out on the performance of n-type x = 0.31 HgCdTe photoconductive detectors in order to evaluate two different etching techniques; dry plasma etching, in the form of H2/CH4 reactive ion etching (RIE), and wet chemical etching using bromine in hydrobromic acid. Two-dimensional laser beam-induced current (LBIC) imaging was employed as an in-line process monitoring tool to evaluate the lateral extent of reactive ion etching (RIE) induced doping changes in the HgCdTe epilayer following mesa delineation. Responsivity and noise measurements were performed on fabricated mid-wavelength infrared (MWIR) photoconductive devices to evaluate the influence dry plasma etching has on material properties. For a signal wavelength of 3 µm, 60° field of view, and a temperature of 80 K, background limited D *λ performance was recorded for wet chemical processed devices but not for the dry plasma processed devices. The D *λ values obtained for wet chemical and dry plasma etched photoconductive detectors were 2.5×1011 cmHz1/2W−1 and 1.0×1010 cmHz1/2W−1, respectively. Mercury annealing, which has been shown to restore the electrical properties of dry plasma processed HgCdTe, could be used to lessen the influence that RIE dry plasma etching has on photoconductor detector performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Su, M. Yokoyama, and Y.K. Su, Mater. Chem. Phys. 50, 205 (1997).

    Article  CAS  Google Scholar 

  2. S.J. Pearton and F. Ren, J. Vac. Sci. Technol. B11, 15 (1993).

    Google Scholar 

  3. K.A. Harris, D.W. Endres, R.W. Yanka, L.M. Mohnkern, A.R. Reisinger, T.H. Myers, A.N. Klymachyov, C.M. Vitrus, and N.S. Dalal, J. Electron. Mater. 24, 1201 (1995).

    Article  CAS  Google Scholar 

  4. R.C. Keller, H. Zimmermann, M. Seelmann-Eggebert, and H.G. Richter, J. Electron. Mater. 26, 542 (1997).

    Article  CAS  Google Scholar 

  5. R.C. Keller, M. seelman-Eggebert, and H.J. Richter, J. Electron. Mater. 24, 1115 (1995).

    Google Scholar 

  6. R.C. Keller, M. Seemann-Eggebert, and H.J. Richter, J. Electron. Mater. 25, 1270 (1996).

    Article  CAS  Google Scholar 

  7. E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Hosch, Semicond. Sci. Technol. 11, 1116 (1996).

    Article  CAS  Google Scholar 

  8. L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.S. Chen, and G. Bostrup, J. Vac. Sci. Technol. A5, 3166 (1987).

    Google Scholar 

  9. J.F. Siliquini, J.M. Dell, C.A. Musca, E.P.G. Smith, L. Faraone, and J. Piotrowski, Appl. Phys. Lett. 72, 52 (1998).

    Article  CAS  Google Scholar 

  10. B.L. Williams, H.G. Robinson, and C.R. Helms, J. Electron. Mater. 27, 583 (1998).

    Article  Google Scholar 

  11. C.A. Musca, J.F. Siliquini, E.P.G. Smith, J.M. Dell, and L. Faraone, J. Electron. Mater. 26, 661 (1998).

    Article  Google Scholar 

  12. W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, and R.P. Ruth, J. Vac. Sci. Technol. B18, 1359 (1992).

    Google Scholar 

  13. J.F. Siliquini, C.A. Musca, B.D. Nener, and L. Faraone, IEEE Trans. Electron Dev. 42, 1441 (1995).

    Article  CAS  Google Scholar 

  14. J. Bajaj, W.E. Tennant, R. Zucca, and S.J. Irvine, Semicond. Sci. Technol. 8, 872 (1993).

    Article  CAS  Google Scholar 

  15. J.T. Wallmark, Proc. IRE 45, 474 (1957).

    Article  Google Scholar 

  16. Y.J. Shacham-Diamand and I. Kidron, Infrared Phys. 21, 105 (1981).

    Article  CAS  Google Scholar 

  17. E.P.G. Smith, J.F. Siliquini, C.A. Musca, J. Anotoszewski, J.M. Dell, and L. Faraone, J. Appl. Phys. 83, 10 (1998).

    Google Scholar 

  18. E.P.G. Smith, C.A. Musca, D.A. Redfern, and L. Faraone, J. Vac. Sci. Technol. A, 17 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.P.G., Musca, C.A., Redfern, D.A. et al. H2-based dry plasma etching for mesa structuring of HgCdTe. J. Electron. Mater. 29, 853–858 (2000). https://doi.org/10.1007/s11664-000-0237-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0237-7

Key words

Navigation