Skip to main content
Log in

Mercury interstitial generation in ion implanted mercury cadmium telluride

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Junction formation and stability in ion implanted mercury cadmium telluride critically depend on the ability to generate Hg interstitials. The creation of Hg interstitials is found to strongly depend on the preferred lattice position of the element implanted. Elements that substitute onto the cation sublattice create significantly more Hg interstitials than elements that sit interstitially or on the anion sublattice. Recoils from implant damage also contribute to Hg interstitial formation in heavier mass implants (Z ≥ of mass Zn), but appear to have negligible influence on interstitial generation in implants of lighter ions. The combination of implanting ions of large mass and high solubility on the cation sublattice produces strong Hg interstitial sources. Implants with these ions can form deep junctions even in heavily doped substrates. Junction stability is also improved with the stronger interstitial source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Williams, H.G. Robinson and C.R. Helms, Appl. Phys. Lett. 71 (5), 692 (1997).

    Article  CAS  Google Scholar 

  2. J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (New York: Pergamon Press, 1985).

    Google Scholar 

  3. S. Holander-Gleixner, H.G. Robinson and C.R. Helms, to be published in J. Appl. Phys. (1997).

  4. S. Holander-Gleixner, B.L. Williams, H.G. Robinson, et al., J. Electron. Mater. 26 (6), 629 (1997).

    CAS  Google Scholar 

  5. N. Archer and H. Palfrey, J. Electron. Mater. 20 (6), 419 (1991).

    CAS  Google Scholar 

  6. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby, J. Cryst. 117, 177 (1992).

    CAS  Google Scholar 

  7. S.L. Holander, H.G. Robinson and C.R. Helms, Modeling and Simulation of Thin Film Processing 389, 47 (1995).

    CAS  Google Scholar 

  8. C.R. Helms and H.G. Robinson (private communication).

  9. C.R. Helms, J.L. Melendez, H.G. Robinson, et al. (private communication).

  10. C.R. Helms, J.L. Melendez, H.G. Robinson, et al., J. Electron. Mater. 24 (9), 1137 (1995).

    CAS  Google Scholar 

  11. J. Melendez and C.R. Helms, J. Electron. Mater. 22 (8), 999 (1993).

    CAS  Google Scholar 

  12. J. Melendez and C.R. Helms, J. Electron. Mater. 24 (5) 565 (1995).

    CAS  Google Scholar 

  13. J. Melendez and C.R. Helms, J. Electron. Mater. 24 (5) 573 (1995).

    CAS  Google Scholar 

  14. J. Melendez, Process Simulation of Mercury Cadmium Telluride, Stanford University, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B.L., Robinson, H.G. & Helms, C.R. Mercury interstitial generation in ion implanted mercury cadmium telluride. J. Electron. Mater. 27, 583–588 (1998). https://doi.org/10.1007/s11664-998-0019-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0019-1

Keywords

Navigation