Skip to main content
Log in

Effect of Al2O3 Content in Inclusions on the Precipitation of MnS During Cooling of a Heavy Rail Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the effect of Al2O3 fraction in Al2O3–SiO2–MnO system inclusions on the precipitation of MnS in heavy rail steels was investigated using laboratory experiments and thermodynamic calculation. Steel samples containing Al2O3–SiO2–MnO inclusions with the fraction of Al2O3 varying from 26 to 94 pct were prepared in laboratory experiments. The content of total oxygen and soluble aluminum was measured. The morphology and composition of oxide inclusions and MnS were analyzed using a scanning electron microscope equipped with an energy-dispersive spectrometer. Results showed that Al2O3–SiO2–MnO oxide inclusions could act as heterogeneous nucleation core of MnS. Both the size and composition of Al2O3–SiO2–MnO inclusions had effects on the precipitation of MnS. Reducing the size of Al2O3–SiO2–MnO inclusions had beneficial effects on the heterogeneous nucleation of MnS during the cooling process in the steel. With the reduction of Al2O3 in < 4 μm Al2O3–SiO2–MnO inclusions, the heterogeneous nucleation ability of MnS increased, especially for < 3 μm Al2O3–SiO2–MnO inclusions. The high content of Al2O3 in heavy rail steels led to an increase in the number density of large-sized individual MnS and the detrimental effect on the heterogeneous nucleation of MnS. The MnS solubility in Al2O3–SiO2–MnO–1 pct MgO–2 pct CaO inclusions at 1453 K significantly decreased from higher than 7 pct to less than 0.1 pct. The lattice disregistry between MnS and Al2O3–SiO2–MnO inclusions increased remarkably with the increase of Al2O3 content in the oxide inclusions. The low Al2O3 content was suggested to be controlled to improve the heterogeneous nucleation ability of MnS on Al2O3–SiO2–MnO inclusions and reduce large-sized MnS with great deformability generated during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F. Hernández, G. Plascencia, and K. Koch: Eng. Fail. Anal., 2009, vol. 16, pp. 281–94.

    Article  Google Scholar 

  2. X. Zhang, L. Zhang, and Y. Dong: AISTech Iron Steel Technol. Confer. Proc., 2015, vol. 3, pp. 3472–79.

    Google Scholar 

  3. C.J. Liu, Y.H. Huang, and M.F. Jiang: J. Iron. Steel Res. Int., 2011, vol. 18, pp. 52–58.

    Article  Google Scholar 

  4. L. Zhang, Q. Ren, H. Duan, Y. Ren, W. Chen, G. Cheng, W. Yang, and S. Sridhar: Min. Process. Extract. Metall., 2020, vol. 29, pp. 184–206.

    Google Scholar 

  5. L. Zhang: Steelmaking, 2016, vol. 32, pp. 1–6.

    Google Scholar 

  6. L.A. Godik, N.A. Kozyrev, and L.V. Korneva: Steel Transl., 2009, vol. 39, pp. 240–42.

    Article  Google Scholar 

  7. L. Zhang, C. Guo, W. Yang, Y. Ren, and H. Ling: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 803–11.

    Article  Google Scholar 

  8. X. Zhang, L. Zhang, W. Yang, Y. Zhang, Y. Ren, and Y. Dong: Metall. Res. Technol., 2016, vol. 114, p. 113.

    Article  Google Scholar 

  9. A.S. Simachev, T.N. Oskolkova, and M.V. Temlyantsev: Steel Transl., 2016, vol. 46, pp. 112–14.

    Article  Google Scholar 

  10. G. Domizzi, G. Anteri, and J. OvejerO–Garcia: Corros. Sci., 2001, vol. 43, pp. 325–39.

    Article  CAS  Google Scholar 

  11. K.V. Grigorovich, K.Y. Demin, A.M. Arsenkin, and A.K. Garber: Russ. Metall., 2011, vol. 2011, pp. 912–20.

    Article  Google Scholar 

  12. Y. Hu and W.Q. Chen: Ironmak. Steelmak., 2016, vol. 43, pp. 1–11.

    Article  Google Scholar 

  13. R. Diederichs and W. Bleck: Steel Res. Int., 2006, vol. 77, pp. 202–09.

    Article  CAS  Google Scholar 

  14. M.E. Valdez, Y. Wang and S. Sridhar: Steel Res. Int., 2005, vol. 76, pp. 306–12.

    Article  CAS  Google Scholar 

  15. W.H. Mcfarland and J.T. Cronn: Metall. Trans. A, 1981, vol. 12, pp. 915–17.

    Article  CAS  Google Scholar 

  16. D. You, S.K. Michelic, G. Wieser, and C. Bernhard: J. Mater. Sci., 2017, vol. 52, pp. 1797–1812.

    Article  CAS  Google Scholar 

  17. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 791–97.

    Article  CAS  Google Scholar 

  18. J. Lu, G. Cheng, J. Che, L. Wang, and G. Xiong: Met. Mater. Int., 2019, vol. 25, pp. 473–86.

    Article  CAS  Google Scholar 

  19. T. Sawai, M. Wakoh, and S. Mizoguchi: Tetsu-to-Hagane, 1996, vol. 82, pp. 587–92.

    Article  CAS  Google Scholar 

  20. W.C. Luu and J.K. Wu: Mater. Lett., 1995, vol. 24, pp. 175–79.

    Article  Google Scholar 

  21. W.Q. Ren, L. Wang, Z.L. Xue, C.Z. Li, and C. Li: High Temp. Mater. Process. (Lond.), 2021, vol. 40, pp. 178–92.

    Article  CAS  Google Scholar 

  22. F. Li, H. Li, H. Di, S. Zheng, and J. You: Met. Mater. Int., 2018, vol. 24, pp. 1394–1402.

    Article  CAS  Google Scholar 

  23. D. Kalisz, P.L. Ak, J. Lelito, M. Szucki, and B. Gracz: Metalurgija-Sisak then Zagreb-, 2015, vol. 54, pp. 139–42.

    Google Scholar 

  24. W. Li, Y. Ren, and L. Zhang: Ironmak. Steelmak., 2020, vol. 47, pp. 1–7.

    Article  CAS  Google Scholar 

  25. X. Shao, X. Wang, C. Ji, H. Li, and Y. Cui: Int. J. Min. Metall. Mater., 2015, vol. 22, pp. 483–91.

    Article  CAS  Google Scholar 

  26. S. Chen and X. Wang: Int. J. Min. Metall. Mater., 2012, vol. 19, pp. 490–98.

    Article  CAS  Google Scholar 

  27. Y. Ehara, S. Yokoyama, and M. Kawakami: Tetsu-to-Hagane, 2007, vol. 93, pp. 475–82.

    Article  CAS  Google Scholar 

  28. L. Zhang, W. Fang, Y. Ren, S. Shao, and J. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1024–34.

    Google Scholar 

  29. Y. Wen, C. Guo, L. Zhang, H. Ling, and L. Chao: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2717–30.

    Google Scholar 

  30. Y. Zhang, Y. Ren, and L. Zhang: Metall. Res. Technol., 2018, vol. 115, p. 415.

    Article  CAS  Google Scholar 

  31. J. Moon, S.-J. Kim, and C. Lee: Met. Mater. Int., 2013, vol. 19, pp. 45–48.

    Article  CAS  Google Scholar 

  32. K. Oikawa, S.I. Sumi, and K. Ishida: Z. Met., 1999, vol. 90, pp. 13–17.

    CAS  Google Scholar 

  33. K. Oikawa, K.I. Da, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.

    Article  CAS  Google Scholar 

  34. J. Lu, G. Cheng, B. Tan, and J. Che: ISIJ Int., 2018, vol. 58, pp. 921–28.

    Article  CAS  Google Scholar 

  35. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 480–89.

    Article  CAS  Google Scholar 

  36. Y. Ren and L. Zhang: Ironmak. Steelmak., 2018, vol. 46, pp. 1–6.

    CAS  Google Scholar 

  37. D.M. Stefanescu and A.V. Catalina: Nucl. Inst. Methods Phys. Res. B, 2007, vol. 240, pp. 137–41.

    Google Scholar 

  38. D. Turnbull and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292–98.

    Article  CAS  Google Scholar 

  39. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (Grant Nos. U1860206, 51725402), S&T Program of Hebei (Grant Nos. 20311006D, 20591001D), the High Steel Center (HSC) at Yanshan University, Hebei Innovation Center of the Development and Application of High Quality Steel Materials, Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ren, Ying Ren or Lifeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Li, Y., Ren, Q. et al. Effect of Al2O3 Content in Inclusions on the Precipitation of MnS During Cooling of a Heavy Rail Steel. Metall Mater Trans B 54, 1468–1482 (2023). https://doi.org/10.1007/s11663-023-02773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02773-w

Navigation