Skip to main content
Log in

Evolution of MnS and MgO·Al2O3 inclusions in AISI M35 steel during electroslag remelting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Thermodynamics and kinetics of dissociation and precipitation of MnS inclusions, as well as the effect of reoxidation in liquid steel on MgO·Al2O3 inclusions in AISI M35 steel during electroslag remelting (ESR) process were investigated. The inclusions found in the consumable electrode were MnS, MgO·Al2O3 and MnS adhering to MgO·Al2O3. MnS inclusions were nearly spherical and ellipse in morphology, and most of them were less than 2 μm in size. MgO·Al2O3 inclusions were polygonal and nearly spherical and most about 1–4 μm in size. The inclusions in ESR ingot observed by scanning electron microscopy–energy-dispersive X-ray spectrometer were polygonal and nearly spherical MgO·Al2O3. MnS inclusions in the consumable electrode were completely dissociated before the liquid film dripping into molten slag pool. The controlling step of MnS inclusions dissociation was the mass transfer of [Mn] in the liquid steel. During the solidification process, the thermodynamic driving force could not meet MnS inclusions precipitation before the solid fraction exceeds 0.996, and the kinetics condition is too poor for the growth of MnS inclusions in the steel when the solid fraction is larger than 0.996. MgO·Al2O3 inclusions in ESR ingot originated from the remained MgO·Al2O3 inclusions in consumable electrode and the fresh ones formed by the reaction between dissolved magnesium, oxygen and aluminum in liquid steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.B. Shi, X. Zheng, Z.B. Yang, P. Lan, J. Li, F. Jiang, Met. Mater. Int. 27 (2021) 3603–3616.

    Article  Google Scholar 

  2. S.K. Maity, N.B. Ballal, G. Goldhahn, R. Kawalla, ISIJ Int. 49 (2009) 902–910.

    Article  Google Scholar 

  3. P.I. Patil, M.M. Patil, P.R. Baviskar, J. Bio. Tribo. Corros. 7 (2021) 115.

    Article  Google Scholar 

  4. M.J. Klug, P.J. Klug, T. Kranjec, B. Podgornik, J. Mater. Res. Technol. 14 (2021) 2365–2381.

    Article  Google Scholar 

  5. H.J. Duan, Y. Zhang, Y. Ren, L.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 962–972.

    Article  Google Scholar 

  6. S.K. Dhua, A. Ray, S.K. Sen, M.S. Prasad, K.B. Mishra, S. Jha, J. Mater. Eng. Perform. 9 (2000) 700–709.

    Article  Google Scholar 

  7. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, E.B. Pretorius, Metall. Mater. Trans. B 43 (2012) 830–840.

    Article  Google Scholar 

  8. M. Jiang, X.H. Wang, J.J. Pak, Metall. Mater. Trans. B 45 (2014) 1248–1259.

    Article  Google Scholar 

  9. J.H. Park, D.S. Kim, Metall. Mater. Trans. B 36 (2005) 495–502.

    Article  Google Scholar 

  10. J.H. Park, H. Todoroki, ISIJ Int. 50 (2010) 1333–1346.

    Article  Google Scholar 

  11. C.B. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2016) 146–161.

    Article  Google Scholar 

  12. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, X.L. Sun, Metall. Mater. Trans. B 44 (2013) 378–389.

    Article  Google Scholar 

  13. H. Wang, J. Li, C.B. Shi, Y.F. Qi, Y.X. Dai, ISIJ Int. 59 (2019) 828–838.

    Article  Google Scholar 

  14. D.L. Zheng, J. Li, C.B. Shi, J. Zhang, R.M. Geng, ISIJ Int. 60 (2020) 1577–1585.

    Article  Google Scholar 

  15. C.B. Shi, J.H. Park, Metall. Mater. Trans. B 50 (2019) 1139–1147.

    Article  Google Scholar 

  16. C.B. Shi, H. Wang, J. Li, Metall. Mater. Trans. B 49 (2018) 1675–1689.

    Article  Google Scholar 

  17. S.J. Li, G.G. Cheng, Z.Q. Miao, W.X. Dai, ISIJ Int. 57 (2017) 2148–2156.

    Article  Google Scholar 

  18. H. Wang, C.M. Shi, J. Li, C.B. Shi, Y.F. Qi, Ironmak. Steelmak. 45 (2018) 6–16.

    Article  Google Scholar 

  19. W. Holzgruber, E. Plöckinger, Stahl. Eisen 88 (1968) 638–648.

    Google Scholar 

  20. A. Paar, R. Schneider, P. Zeller, G. Reiter, S. Paul, P. Würzinger, Steel Res. Int. 85 (2014) 570–578.

    Article  Google Scholar 

  21. Y. Liu, Z. Zhang, G.Q. Li, Q. Wang, L. Wang, B.K. Li, Steel Res. Int. 88 (2017) 1700058.

    Article  Google Scholar 

  22. H. Doostmohammadi, P.G. Jönsson, J. Komenda, S. Hagman, Steel Res. Int. 81 (2010) 142–149.

    Article  Google Scholar 

  23. C. Wagner, Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, UK, 1952.

    Google Scholar 

  24. G.K. Sigworth, J.F. Elliott, Met. Sci. 8 (1974) 298–310.

    Article  Google Scholar 

  25. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, S. Cui, Steel Res. Int. 90 (2019) 1900103.

    Article  Google Scholar 

  26. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, USA, 1988.

    Google Scholar 

  27. A. Mitchell, J. Szekely, J.F. Elliott, Electroslag refining, The Iron and Steel Institute, London, UK, 1973.

    Google Scholar 

  28. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, X. Zheng, Int. J. Miner. Metall. Mater. 28 (2021) 18–29.

    Article  Google Scholar 

  29. S.X. Yang, H.B. Li, H. Feng, Z.H. Jiang, M. Chen, T. He, Metall. Mater. Trans. B 52 (2021) 1294–1308.

    Article  Google Scholar 

  30. C.J. Xiang, Chart Data Manual for Steelmaking, Metallurgical Industry Press, Beijing, China, 1984.

    Google Scholar 

  31. J.H. Wei, A. Mitchell, Acta Metal. Sin. 20 (1984) 261–279.

    Google Scholar 

  32. M.E. Fraser, A. Mitchell, Ironmak. Steelmak. 3 (1976) 279–287.

    Google Scholar 

  33. X.H. Huang, Principles of ferrous metallurgy, Metallurgical industry press, Beijing, China, 2017.

    Google Scholar 

  34. S.K. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.

    Article  Google Scholar 

  35. C.B. Shi, ISIJ Int. 60 (2020) 1083–1096.

    Article  Google Scholar 

  36. Y. Ren, L.F. Zhang, Y. Zhang, J. Iron Steel Res. Int. 25 (2018) 146–156.

    Article  Google Scholar 

  37. S.J. Li, G.G. Cheng, Z.Q. Miao, W.X. Dai, L. Chen, Z.Q. Liu, ISIJ Int. 58 (2018) 1781–1790.

    Article  Google Scholar 

  38. J. Fu, C. Chen, E.P. Chen, Y. Wang, Acta Metall. Sin. 15 (1979) 49–55.

    Google Scholar 

  39. A. Mithcell, Ironmak. Steelmak. 1 (1974) 172–179.

    Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant No. 52104339) and the Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking (Grant No. KF-20-3) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Dl., Ma, Gj., Zhang, X. et al. Evolution of MnS and MgO·Al2O3 inclusions in AISI M35 steel during electroslag remelting. J. Iron Steel Res. Int. 28, 1605–1616 (2021). https://doi.org/10.1007/s42243-021-00698-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00698-9

Keywords

Navigation