Skip to main content
Log in

Directional Solidification of Al–Si–Ti Irregular Ternary Eutectic Alloy and Thermophysical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Directional solidification of Al–11.75 wt pct Si–2.15 wt pct Ti irregular eutectic alloy which has an 843.83 K melting point, was done with different growth rates (V = 8.51 to 2065.18 µm s−1) at a temperature gradient (G) of 8.36 K mm−1 using Bridgman-type directional solidification apparatus (BTDSA). Scanning electron microscopy (SEM)—Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to characterize all phases forming the alloy. The average values of interflake spacing (λT) were measured from transverse sections of the directionally solidified samples with standard techniques. The dependency of λT was experimentally obtained using linear regression analysis for low, high, and all growth rates. It was observed that the λT values tended to decrease with increasing V values; therefore, the interflake structures came closer. The fusion enthalpy (ΔHf) and specific heat difference between solid and liquid (ΔCp) for the Al–Si–Ti eutectic alloy were found as 376.12 J g−1and 0.659 J g−1 K−1, respectively, by the differential scanning calorimetry (DSC). All results obtained in the present work were compared with the eutectic theory and the Al-based similar experimental results in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.A. Porter and K.E. Easterlirng: Phase Transformations in Metals and Alloys, 2nd ed. CRC Press, Boca Raton, 1992.

    Google Scholar 

  2. F.L. VerSnyder and R.W. Guard: Tans. ASM, 1960, vol. 52, pp. 485–92.

    CAS  Google Scholar 

  3. M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen: Mater. Sci Eng. A, 2004, vol. 369, pp. 215–29.

    Google Scholar 

  4. E. Çadırlı, A. Ülgen, and M. Gündüz: Mater. Trans., 1999, vol. 40, pp. 989–96.

    Google Scholar 

  5. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı: Kovove Mater., 2010, vol. 48, pp. 291–300.

    CAS  Google Scholar 

  6. H. Kaya, E. Çadırlı, and M. Gündüz: Appl. Phys. A, 2009, vol. 94, pp. 155–65.

    CAS  Google Scholar 

  7. X. Lin, W.D. Huang, J. Feng, T. Li, and Y. Zhou: Acta Mater., 1999, vol. 47, pp. 3271–80.

    CAS  Google Scholar 

  8. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu: Appl. Phys. A, 2009, vol. 95, pp. 923–32.

    Google Scholar 

  9. U. Böyük, S. Engin, and N. Maraşlı: Mater. Charact., 2011, vol. 62, pp. 844–51.

    Google Scholar 

  10. E. Çadırlı, İ Yılmazer, M. Şahin, and H. Kaya: Trans. Indian Ins. Met., 2015, vol. 68, pp. 817–27.

    Google Scholar 

  11. Y. Kaygısız and N. Maraşlı: J. Alloys Compd., 2015, vol. 618, pp. 197–203.

    Google Scholar 

  12. S. Engin, U. Böyük, and N. Maraşlı: J. Alloys Compd., 2016, vol. 660, pp. 23–31.

    CAS  Google Scholar 

  13. Y. Kaygısız and N. Maraşlı: J. Alloys Compd., 2017, vol. 721, pp. 764–71.

    Google Scholar 

  14. F. Bertelli, E.S. Freitas, N. Cheung, M.A. Arenas, A. Conde, J. de Damborenea, and A. Garcia: J. Alloys Compd., 2017, vol. 695, pp. 3621–31.

    CAS  Google Scholar 

  15. H. Kaya and A. Aker: J. Alloys Compd., 2017, vol. 694, pp. 145–54.

    CAS  Google Scholar 

  16. Ü. Bayram and N. Maraşlı: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3293–3305.

    Google Scholar 

  17. Y. Kaygısız: China Foundry, 2018, vol. 15, pp. 390–96.

    Google Scholar 

  18. R. Kakitani, R.V. Reyes, A. Garcia, J.E. Spinelli, and N. Cheung: J. Alloys Compd., 2018, vol. 733, pp. 59–68.

    CAS  Google Scholar 

  19. N. Maraşlı and Ü. Bayram: J. Alloys Compd., 2018, vol. 753, pp. 695–702.

    Google Scholar 

  20. U. Böyük, S. Engin, H. Kaya, E. Çadırlı, and N. Maraşlı: Phys. Met. Metall., 2020, vol. 121, pp. 78–83.

    Google Scholar 

  21. E. Çadırlı, E. Nergiz, H. Kaya, U. Büyük, M. Şahin, and M. Gündüz: Int. J Cast Met. Res., 2020, vol. 33(1), pp. 11–23.

    Google Scholar 

  22. Ü. Bayram and N. Maraşlı: Phys. Metals Metallogr., 2020, vol. 21, pp. 382–90.

    Google Scholar 

  23. E. Üstün and E. Çadırlı: J. Alloys Compd., 2021, vol. 855(1), p. 157331.

    Google Scholar 

  24. N. Maraşlı and Ü. Bayram: Int. J. Thermophys., 2021, vol. 42, p. 94.

    Google Scholar 

  25. H. Kaya, U. Büyük, E. Çadırlı, M. Şahin, and M. Gündüz: J. Mater. Eng. Perform., 2022, vol. 31, pp. 1622–30.

    CAS  Google Scholar 

  26. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Chapter 5, 4th revised Trans Tech Publications Ltd., Bäch, 1998.

    Google Scholar 

  27. Y.S. Sun, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1990, vol. 21A, pp. 575–88.

    CAS  Google Scholar 

  28. Y. Zhang, C. Song, L. Zhu, H. Zheng, H. Zhong, Q. Han, and Q. Zhai: Metall. Mater. Trans. B, 2011, vol. 42, pp. 604–11.

    CAS  Google Scholar 

  29. R. Kakitani, G.L. de Gouveia, A. Garcia, N. Cheung, and J.E. Spinelli: J. Therm. Anal. Calorim., 2019, vol. 137, pp. 983–96.

    CAS  Google Scholar 

  30. T. Duffar and L. Sylla: Crystal Growth Processes Based on Capillarity. Chapter 6—Vertical Bridgman Technique and Dewetting, Wiley, New York, 2010, pp. 355–411.

    Google Scholar 

  31. R. Venkataraman: Handbook of Radioactivity Analysis. Chapter 4—Semiconductor detectors, Elsevier Inc., Amsterdam, 2020, pp. 458–59.

    Google Scholar 

  32. C. Baron, H. Springer, and D. Raabe: Mater. Des., 2016, vol. 112, pp. 131–39.

    CAS  Google Scholar 

  33. S.Q. Ma, J.D. Xing, H.G. Fu, Y.M. Gao, and J.J. Zhang: Acta Mater., 2012, vol. 60, pp. 831–43.

    CAS  Google Scholar 

  34. C. Baron, H. Springer, and D. Raabe: Mater. Sci. Eng. A, 2018, vol. 724, pp. 142–47.

    CAS  Google Scholar 

  35. G. Xu, K. Wang, X. Dong, L. Yang, H. Jiang, Q. Wang, and W. Ding: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4610–22.

    Google Scholar 

  36. V.Y. Bazhin, V.M. Sizyakov, A.A. Vlasov, and R. Yu Feshchenko: Metallurgist, 2013, vol. 56, pp. 863–66.

    Google Scholar 

  37. I.V. Uskov, S.V. Belyaev, I.D. Uskov, T.R. Gilmanshina, I.V. Kirko, and N.P. Koptseva: ARPN J. Eng. Appl. Sci., 2016, vol. 11, pp. 12367–70.

    CAS  Google Scholar 

  38. N.A. Belov, N.O. Korotkova, T.K. Akopyan, and A.M. Pesin: J. Alloys Compd., 2019, vol. 782, pp. 735–46.

    CAS  Google Scholar 

  39. S. Birinci, S. Basit, and N. Maraşlı: J. Mater. Eng. Perform., 2022, vol. 31, pp. 5070–79.

    CAS  Google Scholar 

  40. S. Hegde and K.N. Prabhu: J Mater Sci., 2008, vol. 43, pp. 3009–27.

    CAS  Google Scholar 

  41. A. Pacz, 1921, U.S. Patent No: 1387900

  42. K. Nogita and A.K. Dahle: Mater. Trans. (JIM), 2001, vol. 42, pp. 207–14.

    CAS  Google Scholar 

  43. Y. Zhang, F. Yan, Y. Zhao, C. Song, and H. Hou: Mater. Res. Express, 2020, vol. 7, p. 036526.

    CAS  Google Scholar 

  44. G.S. Vinod Kumar, B.S. Murty, and M. Chakraborty: J. Alloys Compd., 2005, vol. 396, pp. 143–50.

    Google Scholar 

  45. K.P. Rao and Y.J. Du: Mater. Sci. Eng. A, 2000, vol. 277, pp. 46–56.

    Google Scholar 

  46. T. Gao, P. Li, Y. Li, and X. Liu: J. Alloys Compd., 2011, vol. 509, pp. 8013–17.

    CAS  Google Scholar 

  47. N. Saheb, T. Laoui, A.R. Daud, M. Harun, S. Radiman, and R. Yahaya: Wear, 2001, vol. 249, pp. 656–62.

    CAS  Google Scholar 

  48. G. Zhang, W. Su, and A. Suzumura: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2026–39.

    Google Scholar 

  49. J.C. Pang, X.P. Cui, A.B. Li, G.H. Fan, L. Geng, Z.Z. Zheng, and Q.W. Wang: Mater. Sci. Eng. A, 2013, vol. 579, pp. 57–63.

    CAS  Google Scholar 

  50. I.A. Alkadir: DJES, 2016, vol. 9(4), pp. 48–61.

    Google Scholar 

  51. A.D. Subhi, A.A. Khleif, and Q.S. Abdul-Wahid: Eng. Trans., 2020, vol. 68, pp. 385–95.

    Google Scholar 

  52. L. Chen, J. Xu, and X. Chun Li: Mater. Res. Lett., 2015, vol. 3(1), pp. 43–49.

    Google Scholar 

  53. W. Kurz and R. Trivedi: Metall. Trans. A-Phys. Metall. Mater. Sci., 1991, vol. 22(12), pp. 3051–57.

    Google Scholar 

  54. V. Raghavan: J. Phase Equilib. Diffus. ASM Int., 2009, vol. 30, pp. 82–83.

    CAS  Google Scholar 

  55. E. Çadırlı and M. Gündüz: J. Mater. Proc. Technol., 2000, vol. 97, pp. 74–81.

    Google Scholar 

  56. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater, 2009, vol. 57, pp. 941–71.

    CAS  Google Scholar 

  57. E. Acer, H. Erol, and M. Gündüz: Light Met. Technol. Book Ser. Mater. Sci. Forum, 2013, vol. 765, pp. 215–19.

    Google Scholar 

  58. E. Çadırlı, H. Kaya, and M. Gündüz: Mater. Res. Bull., 2003, vol. 38, pp. 1457–76.

    Google Scholar 

  59. Ü. Bayram, Y. Karamazı, P. Ata, S. Aksöz, K. Keşlioglu, and N. Maraşlı: Int. J. Mater. Res., 2016, vol. 107, pp. 1005–15.

    Google Scholar 

  60. E. Çadırlı, H. Kaya, and N. Maraşlı: Met. Mater. Int., 2009, vol. 15, pp. 741–51.

    Google Scholar 

  61. H. Kaya, E. Çadırlı, and M. Gündüz: J. Mater. Process Technol., 2007, vol. 183, pp. 310–20.

    CAS  Google Scholar 

  62. H. Kaya, E. Çadırlı, and M. Gündüz: J. Mater. Eng. Perform., 2003, vol. 12, pp. 456–69.

    CAS  Google Scholar 

  63. S. Liu, F. Weitzer, J.C. Schuster, N. Krendelsberger, and Y. Du: Int. J. Mater. Res., 2008, vol. 99, pp. 705–11.

    CAS  Google Scholar 

  64. Z. Li, C. Liao, Y. Liu, X. Wang, Y. Wu, M. Zhao, Z. Long, and F. Yin: J. Phase Equ. Diffus., 2014, vol. 35, pp. 564–74.

    CAS  Google Scholar 

  65. M. Gao, T.J. Chen, and Z.X. Zhang: J. Mater. Sci. Technol., 2021, vol. 94, pp. 247–63.

    CAS  Google Scholar 

  66. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

  67. A. Aker, S. Engin, I. Yılmazer, and H. Kaya: Int. J. Mater. Eng. Technol., 2013, vol. 9, pp. 59–79.

    Google Scholar 

  68. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu: J. Alloys Compd., 2010, vol. 506(2), pp. 593–99.

    CAS  Google Scholar 

  69. J. De Wilde, L. Froyen, and S. Rex: Scr. Mater., 2004, vol. 51, pp. 533–38.

    Google Scholar 

  70. D.G. McCartney and J.D. Hunt: Acta Metall., 1981, vol. 29, pp. 1851–63.

    CAS  Google Scholar 

  71. Berkdemir and M. Gündüz: Mater. Sci. Forum, 2010, vol. 649, pp. 425–30.

    CAS  Google Scholar 

  72. E. Çadırlı: Met. Mater. Int., 2013, vol. 19, pp. 411–22.

    Google Scholar 

  73. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı: Met. Mater. Int., 2013, vol. 19, pp. 39–44.

    CAS  Google Scholar 

  74. E. Acer, E. Cadirli, H. Erol, H. Kaya, and M. Gündüz: Met. Mater. Trans. A, 2017, vol. 48, pp. 5911–23.

    CAS  Google Scholar 

  75. E. Çadırlı, A. Aker, Y. Kaygısız, and M. Şahin: Mater. Res., 2017, vol. 20, pp. 801–13.

    Google Scholar 

  76. S. Steinbach and L. Ratke: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1388–94.

    CAS  Google Scholar 

  77. U. Böyük: Met. Mater. Int., 2012, vol. 18, pp. 933–38.

    Google Scholar 

  78. S. Aksöz, Y. Ocak, N. Maraşlı, E. Çadirli, H. Kaya, and U. Böyük: Ex. Ther. Flu. Sci., 2010, vol. 34, pp. 1507–16.

    Google Scholar 

  79. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı: Mater. Des., 2012, vol. 34, pp. 707–12.

    CAS  Google Scholar 

  80. A. Aker and H. Kaya: Int J Ther., 2013, vol. 34, pp. 267–83.

    CAS  Google Scholar 

  81. U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, and K. Keşlioğlu: Curr. Appl. Phys., 2012, vol. 12, pp. 7–10.

    Google Scholar 

  82. A. Aker and H. Kaya: Int. J. Cast Met. Res., 2017, vol. 30(5), pp. 293–300.

    CAS  Google Scholar 

  83. U. Büyük, E. Çadırlı, and H. Kaya: EJONS Int. J. Math. Eng. Nat. Sci., 2022, vol. 6, pp. 18–27.

    Google Scholar 

Download references

Acknowledgments

Since the experimental processes of this study were carried out in Erciyes University Science Faculty Solid State Physics-I laboratory, the researchers are thankful to the laboratory supervisor Professor Necmettin Maraşlı and his team for their support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ÜMİT Bayram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayram, Ü. Directional Solidification of Al–Si–Ti Irregular Ternary Eutectic Alloy and Thermophysical Properties. Metall Mater Trans B 53, 3865–3881 (2022). https://doi.org/10.1007/s11663-022-02648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02648-6

Navigation