Skip to main content
Log in

Study of Peritectic Phase Transition in High-Mn Steel Using Phase-Field Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A multi-component multi-phase-field model was conducted to simulate the solidification process of Fe-Mn-C-Al high-Mn steel with different solidification modes, especially that with the peritectic phase transition. The evolution of the microstructure and solute distribution during the solidification process was analyzed. In addition, the influence of the C content, cooling rate, and thermal undercooling was discussed. The results reveal that the area of interfaces and solute distribution influence the evolution of phase fractions. The amount of initial ferrite phase, the solute distribution formed by the initial ferrite phase, and the nucleation position of austenite phase are key factors affecting the microstructure morphology and microsegregation. The microstructure and microsegregation have an interactive effect. Increasing C content changes the solidification mode, leading to different microstructure and microsegregation. For all the steel with different C contents, the cooling rate and undercooling do not influence the phase transition sequence, while they affect the microstructure and microsegregation. The cooling rate and thermal undercooling have more influence on the solidification process of hypo-peritectic high-Mn steel than hyper-peritectic steel. The present study contributes to providing significant reference for the process control of the microstructure morphology and microsegregation of peritectic high-Mn steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.H. Jo and K.W. Yi: Met. Mater. Int., 2020, https://doi.org/10.1007/s12540-020-00876-6.

    Article  Google Scholar 

  2. J. Eiken, M. Apel, V.T. Witusiewicz, J. Zollinger, and U. Hecht: Phys. Condens. Matter., 2009, vol. 21(46), p. 464104.

    Article  CAS  Google Scholar 

  3. K. Harste and K. Schwerdtfeger: ISIJ Int., 2003, vol. 43, pp. 1011–20.

    Article  CAS  Google Scholar 

  4. M. Suzuki, C.H. Yu, H. Sato, Y. Tsui, H. Shibata, and T. Emi: ISIJ Int., 1996, vol. 36, pp. S171-74.

    Article  Google Scholar 

  5. I. Tamura, H. Sekine, and T. Tanaka: Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st ed. Butterworth-Heinemann, London, 1988, pp. 50–77.

    Google Scholar 

  6. K.H. Lee, M.C. Kim, B.S. Lee, and D.M. Wee: J. Nucl. Mater., 2010, vol. 403, pp. 68–74.

    Article  CAS  Google Scholar 

  7. A. Yamanaka, K. Nakajima, and K. Okamura: Ironmak. Steelmak., 1995, vol. 22, pp. 508–12.

    CAS  Google Scholar 

  8. H.W. Kerr, J. Cisse, and G.F. Bolling: Acta. Metall., 1974, vol. 22(6), pp. 677–86.

    Article  CAS  Google Scholar 

  9. M. Hillert: Solidification and Casting of Metals, The Metals Society, London, 1979.

    Google Scholar 

  10. T. Liu, M. Long, D. Chen, Y. Huang, J. Yang, H. Duan, L. Gui, and P. Xu: Metall. Mater. Trans. B., 2019, vol. 51B, pp. 338–52.

    Google Scholar 

  11. S. Griesser, M. Reid, C. Bernhard, and R. Dippenaar: Acta. Mater., 2014, vol. 67, pp. 335–41.

    Article  CAS  Google Scholar 

  12. H. Shibata, Y. Arai, M. Suzuki, and T. Emi: Metall. Mater. Trans. B., 2000, vol. 31B, pp. 981–91.

    Article  CAS  Google Scholar 

  13. H. Yin and T. Emi: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 483–93.

    Article  CAS  Google Scholar 

  14. W.P. Bosze and R.K. Trivedi: Metall. Trans., 1974, vol. 5, pp. 511–2.

    Article  CAS  Google Scholar 

  15. M. Ohno and K. Matsuura: Acta. Mater., 2010, vol. 58, pp. 6134–41.

    Article  CAS  Google Scholar 

  16. D. Phelan, M. Reid, and R. Dippenaar: Mat. Sci. Eng. A., 2008, vol. 477(1), pp. 226–32.

    Article  Google Scholar 

  17. F. Hodaj and P.J. Desre: Acta. Mater., 1996, vol. 44(11), pp. 4485–90.

    Article  CAS  Google Scholar 

  18. H. Nassar and H. Fredriksson: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 2776–83.

    Article  CAS  Google Scholar 

  19. Y.K. Chuang, D. Reinisch, and K. Schwerdtfeger: Metall. Mater. Trans. A., 1975, vol. 6A, pp. 235–8.

    Article  Google Scholar 

  20. T. Liu, M. Long, D. Chen, Y. Huang, J. Yang, L. Gui, and P. Xu: Metall. Mater. Trans. B., 2020, vol. 51B, p. 338.

    Article  Google Scholar 

  21. S. Griesser, C. Bernhard, and R. Dippenaar: Acta Mater., 2014, vol. 81, p. 111.

    Article  CAS  Google Scholar 

  22. H. Liu, J. Liu, B. Wu, Y. Shen, Y. He, and H. Ding: Mater. Sci. Eng. A., 2017, vol. 708, pp. 360–74.

    Article  CAS  Google Scholar 

  23. Y. Chen, X.M. Zhang, Z.H. Cai, H. Ding, M.M. Pan, W. Wei, and Y.W. Liu: Steel Res. Int., 2020, vol. 91(7), p. 1900660.

    Article  CAS  Google Scholar 

  24. Y. Shen, J. Liu, H. Xu, and H. Liu: Steel Res. Int., 2020, vol. 92(2), p. 2000313.

    Article  Google Scholar 

  25. Y. Shen, J. Liu, S. Yang, B. Yan, and H. Yang: J. Cryst. Growth., 2019, vol. 511, pp. 118–26.

    Article  CAS  Google Scholar 

  26. Y. Shen, J. Liu, H. Xu, and H. Liu: Metal Mater. Trans. B., 2020, vol. 51B, pp. 2963–75.

    Article  Google Scholar 

  27. C. Zhuang, J. Liu, C. Li, and D. Tang: Sci. Rep., 2019, vol. 9(1), p. 15962.

    Article  Google Scholar 

  28. M.S. Kim and Y.B. Kang: Calphad., 2015, vol. 51, pp. 89–103.

    Article  CAS  Google Scholar 

  29. C. Slater, K. Hechu, and S. Sridhar: Mater. Charact., 2017, vol. 126, pp. 144–8.

    Article  CAS  Google Scholar 

  30. S. Griesser, C. Bernhard, and R. Dippenaar: ISIJ Int., 2014, vol. 54(2), pp. 466–73.

    Article  CAS  Google Scholar 

  31. C.L.M. Alves, J. Rezende, D. Senk, and J. Kundin: J. Mater. Res. Technol., 2018, vol. 8(1), pp. 233–42.

    Article  Google Scholar 

  32. C. Yang, S. Li, X. Wang, J. Wang, and H. Huang: Comput. Mater. Sci., 2020, vol. 171, p. 109220.

    Article  CAS  Google Scholar 

  33. S. Luo, G. Liu, P. Wang, X. Wang, W. Wang, and M. Zhu: Metall. Mater. Trans. A., 2019, vol. 51A(2), pp. 767–77.

    Article  Google Scholar 

  34. Y. Shen, S. Yang, J. Liu, R. Zhang, H. Xu, and Y. He: Steel Res. Int., 2019, vol. 90(5), p. 1800546.

    Article  Google Scholar 

  35. J. Eiken, B. Bottger, and I. Steinbach: Phys. Rev. E., 2006, vol. 73(6), p. 066122.

    Article  CAS  Google Scholar 

  36. I. Steinbach, F. Pezzolla, B. Nestler, M.M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: Physica D., 1996, vol. 94(3), pp. 135–47.

    Article  Google Scholar 

  37. I. Steinbach, B. Bottger, J. Eiken, N. Warnken, and S.G. Fries: J. Phase Equilib. Diff., 2007, vol. 28, pp. 101–6.

    Article  CAS  Google Scholar 

  38. G.J. Schmitz, B. Böttger, J. Eiken, M. Apel, A. Viardin, A. Carré, and G. Laschet: Int. J. Adv. Eng. Sci. Appl. Math., 2011, vol. 2(4), pp. 126–39.

    Article  Google Scholar 

  39. J. Rezende, C. Alves, C. Schankies, D. Hüttenmeister, D. Senk: Phase-field investigation of the influence of the solid-liquid interface energy and process parameters on the dendrite growth morphology and microsegregation for high manganese steels. Tms. 2015.

  40. H.D. Brody and M.C. Flemings: Trans. Metall. Soc., 1966, vol. 236, p. 615.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this research provided by the National Nature Science Foundation of China (Grant No. 51574022) and China Scholarship Council (File No. 201906460091). The authors express sincere thanks to Prof. Deter Senk of the Department of Ferrous Metallurgy, RWTH Aachen University, for his kindly help.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2021; accepted October 5, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, J. & Xu, H. Study of Peritectic Phase Transition in High-Mn Steel Using Phase-Field Method. Metall Mater Trans B 53, 121–135 (2022). https://doi.org/10.1007/s11663-021-02348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02348-7

Navigation