Skip to main content
Log in

Numerical Simulation of Heat Treatment Process by Incorporating Stress State on Martensitic Transformation to Investigate Microstructure and Stress State of 1045 Steel Gear Parts

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work concurrently investigates the microstructure evolution and stress state during continuous cooling of 1045 steel gear parts. A finite element algorithm was developed by two-way coupling of microstructural and thermal fields. Thermal coefficients were correlated to microstructural evolution, and a phase transformation kinetics model was considered to be both temperature and time dependent. Magee's rule was chosen for martensitic transformation modeling to incorporate the effect of stress state on microstructural field. The dilation curves for the benchmark sample show that martensite starting temperature increases when the stress state is considered in microstructure modeling. To determine the validity of the presented model, a cylindrical specimen was quenched in water and oil media, and their predicted microstructures were compared with experimental results. A reasonable harmony between simulated and experimental results was observed. The simulation was then performed for internal gear parts quenched in oil and water media. The simultaneous monitoring of microstructure and stress evolution during continuous cooling of an internal gear part was conducted. It was shown that simultaneous and separate transformations occurring between the tooth and root region have a determining role in the sign of stress for internal gear parts. Lastly, based on monitoring of different phase transformation scenarios occurring during water and oil quenching, a hybrid quenching was proposed to increase martensite volume fraction at the tooth region of an oil-quenched sample without altering the microstructure at root region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gurmeet Singh, Materials Today: Proceedings 2020.

  2. W. Zhang, Z. Dong, H. Kang, C. Yang, and X. Peng: J. Mater. Process. Technol., 2021, vol. 288, p. 116907.

    Article  CAS  Google Scholar 

  3. L. Chang, K. Mukahiwa, J. Duff, M.G. Burke, and F. Scenini: Scripta Mater., 2021, vol. 195, p. 113742.

    Article  CAS  Google Scholar 

  4. X. Wang, C.H. Zhang, X. Cui, S. Zhang, J. Chen, and J.B. Zhang: Vacuum., 2020, vol. 175, p. 109216.

    Article  CAS  Google Scholar 

  5. Z. Wang, K. Wang, Y. Liu, B. Zhu, Y. Zhang, and S. Li: J. Mater. Process. Technol., 2019, vol. 269, pp. 150–62.

    Article  CAS  Google Scholar 

  6. W.P. de Oliveira, M.A. Savi, P.M.C.L. Pacheco, and L.F.G. de Souza: Mech. Mater., 2010, vol. 42, pp. 31–43.

    Article  Google Scholar 

  7. M. Jung, M. Kang, and Y.-K. Lee: Acta Mater., 2012, vol. 60, pp. 525–36.

    Article  CAS  Google Scholar 

  8. D.W. Kim, H.H. Cho, W.B. Lee, K.T. Cho, Y.G. Cho, S.J. Kim, and H.N. Han: Mater. Design., 2016, vol. 99, pp. 243–53.

    Article  CAS  Google Scholar 

  9. W.A. Johnson and R.F. Mehl: Trans. AIME., 1939, vol. 135, pp. 416–58.

    Google Scholar 

  10. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  11. E. Scheil: Archiv für das Eisenhüttenwesen., 1935, vol. 8, pp. 565–7.

    Article  CAS  Google Scholar 

  12. M.V. Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 661–72.

    Article  CAS  Google Scholar 

  13. Ø. Grong and H.R. Shercliff: Prog. Mater Sci., 2002, vol. 47, pp. 163–282.

    Article  CAS  Google Scholar 

  14. M. Lusk, W. Wang, X. Sun and Y.-K. Lee (2003).

  15. S.-J. Lee, E.J. Pavlina, and C.J. Van Tyne: Mater. Sci. Eng., A., 2010, vol. 527, pp. 3186–94.

    Article  Google Scholar 

  16. M. Pietrzyk and R. Kuziak: Arch. Civil Mech. Eng., 2011, vol. 11, pp. 707–22.

    Article  Google Scholar 

  17. P.R. Woodard, S. Chandrasekar, and H.T.Y. Yang: Metall. Mater. Trans. B., 1999, vol. 30B, p. 815.

    Article  CAS  Google Scholar 

  18. S.H. Kang and Y.T. Im: J. Mater. Process. Technol., 2007, vol. 192–193, pp. 381–90.

    Article  Google Scholar 

  19. P.G.K. Amos, E. Schoof, N. Streichan, D. Schneider, and B. Nestler: Comput. Mater. Sci., 2019, vol. 159, pp. 281–96.

    Article  Google Scholar 

  20. O. Seppälä, A. Pohjonen, A. Kaijalainen, J. Larkiola, and D. Porter: Proc. Manuf., 2018, vol. 15, pp. 1856–63.

    Google Scholar 

  21. B. Su, Q. Ma, and Z. Han: Steel Res. Int., 2017, vol. 88, p. 1600490.

    Article  Google Scholar 

  22. D. An, S. Pan, Q. Yu, C. Lin, T. Dai, B.W. Krakauer, and M. Zhu: IOP Conf. Ser., 2015, vol. 84, p. 012045.

    Article  Google Scholar 

  23. Y.J. Lan, D.Z. Li, and Y.Y. Li: Acta Mater., 2004, vol. 52, pp. 1721–9.

    Article  CAS  Google Scholar 

  24. Y.-N. Guo, Y.-T. Li, W.-Y. Tian, H.-P. Qi, and H.-H. Yan: Chin. J. Mech. Eng., 2018, vol. 31, p. 85.

    Article  Google Scholar 

  25. S.-H. Kang and Y.-T. Im: Int. J. Mech. Sci., 2007, vol. 49, pp. 423–39.

    Article  Google Scholar 

  26. G.E. Totten: Handbook of Residual Stress and Deformation of Steel, ASM International, Almere, 2002.

    Google Scholar 

  27. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  28. M. Eshraghi-Kakhki, M.A. Golozar, and A. Kermanpur: Mater. Des., 2011, vol. 32, pp. 2870–7.

    Article  CAS  Google Scholar 

  29. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  30. C.L. Magee, Phase transformations. 1970.

  31. J. Sun, J. Hensel, J. Klassen, T. Nitschke-Pagel, and K. Dilger: J. Mater. Process. Technol., 2019, vol. 265, pp. 173–84.

    Article  CAS  Google Scholar 

  32. L. S. Darken, R. W. Gurry and M. B. Bever, 1953.

  33. M. Eshraghi-Kakhki, A. Kermanpur, and M.A. Golozar: Mater. Sci. Technol., 2012, vol. 28, pp. 197–204.

    Article  CAS  Google Scholar 

  34. ASTMA1033-18, (ASTM International: West Conshohocken, PA, USA, 2018).

  35. P. Carlone, G.S. Palazzo, and R. Pasquino: Comput. Math. Appl., 2010, vol. 59, pp. 585–94.

    Article  Google Scholar 

Download references

Acknowledgments

This paper and the research behind it would not have been possible without the exceptional support of Dr. Azadeh Shojaee, School of Dentistry, Isfahan University of Medical Sciences. Her matchless enthusiasm, unwavering work dedication, comprehensive knowledge and expertise have been an inspiration and kept my work on track from my first encounter with the countless unemotional lines of simulation codes. The author also thanks Prof. Antoine Allanore, Massachusetts Institute of Technology, the editor of Metallurgical and Materials Transactions B, for the review’s speed and comments, which strengthened the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Koohi Esfahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 28, 2021, accepted September 15, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, A.K. Numerical Simulation of Heat Treatment Process by Incorporating Stress State on Martensitic Transformation to Investigate Microstructure and Stress State of 1045 Steel Gear Parts. Metall Mater Trans B 52, 4109–4129 (2021). https://doi.org/10.1007/s11663-021-02332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02332-1

Navigation