Skip to main content
Log in

Reconsideration of Viscosity Variation Mechanism in Calcium Ferrite Melt During Isothermal Melting Process

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Two hypotheses exist to explain the viscosity decrease mechanism of calcium ferrite (CF) melts during isothermal melting in air: variations in either the short-range structure near Fe3+ or the Fe redox state. Here, the synchrotron X-ray total scattering pattern of an aerodynamically levitated CF droplet was monitored during isothermal melting. No variations were observed in the short-range structure of the melt for 1800 seconds, indirectly suggesting that redox state variations dominate the viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. M.J. Toplis and D.B. Dingwell, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5169-88.

    Article  CAS  Google Scholar 

  2. C. Le Losq, D.R. Neuville, P. Florian, G.S. Henderson and D. Massiot, Geochim. Cosmochim. Acta, 2014, vol. 126, pp. 495-517.

    Article  Google Scholar 

  3. K. Seki and F. Oeters, Trans. Iron Steel Inst. Jpn, 1984, vol. 24, pp. 445-54.

    Article  CAS  Google Scholar 

  4. G.H. Kaiura, J.M. Toguri and G. Marchant, Can. Metall. Q., 1977, vol. 16, pp. 156-60.

    Article  CAS  Google Scholar 

  5. J.W. Nowok, Energy Fuels, 1995, vol. 9, pp. 534-9.

    Article  CAS  Google Scholar 

  6. D.B. Dingwell, Am. Mineral., 1991, vol. 76, pp. 1560-2.

    CAS  Google Scholar 

  7. D.B. Dingwell and Sharon L. Webb, Phys. Chem. Miner., 1989, vol. 16, pp. 508-16.

  8. S. Webb, Rev. Geophys., 1997, vol. 35, pp. 191-218.

    Article  CAS  Google Scholar 

  9. Y. Anzai, K. Terashima and S. Kimura, J. Cryst. Growth, 1993, vol. 134, pp. 235-9.

    Article  CAS  Google Scholar 

  10. X. Huang, Y. Zhao, K. Lu and D. Tang, J. Cryst. Growth, 1996, vol. 165, pp. 413-20.

    Article  CAS  Google Scholar 

  11. N. Saito, N. Hori, K. Nakashima and K. Mori, Metal. Mater. Trans. B, 2003, vol. 34, pp. 509-16.

    Article  CAS  Google Scholar 

  12. S. Sukenaga, Y. Gonda, S. Yoshimura, N. Saito and K. Nakashima, ISIJ Int., 2010, vol. 50, pp. 195-9.

    Article  CAS  Google Scholar 

  13. T.J. Park, J.S. Choi and D.J. Min, Metal. Mater. Trans. B, 2019, vol. 50, pp. 790-8.

    Article  Google Scholar 

  14. T.J. Park, J.S. Choi and D.J. Min, Metal. Mater. Trans. B, 2018, vol. 49, pp. 2174-81.

    Article  Google Scholar 

  15. S. Cheng, M. Shevchenko, P.C. Hayes and E. Jak, Metal. Mater. Trans. B, 2020, vol. 51, pp. 1587-602.

    Article  Google Scholar 

  16. E.-P. Heikkinen, M. Iljana and T. Fabritius, ISIJ Int., 2020, vol. 60, pp. 2633-48.

    Article  CAS  Google Scholar 

  17. S. Nicol, S. Cheng, E. Jak and P.C. Hayes, ISIJ Int., 2020, vol. 60, pp. 2659-68.

    Article  CAS  Google Scholar 

  18. M. Yang, J. Xiang, C. Bai, X. Zhou, Z. Liu and X. Lv, Metal. Mater. Trans. B, 2021, vol. 52B, pp. 1436–49.

    Article  Google Scholar 

  19. R. Zhang, Y. Wang, X. Zhao, J. Jia, C. Liu and Y. Min, Metal. Mater. Trans. B, 2020, vol. 51, pp. 2021-9.

    Article  Google Scholar 

  20. Y. Park and D.J. Min, Metal. Mater. Trans. B, 2018, vol. 49, pp. 1709-18.

    Article  Google Scholar 

  21. Z. Yan, R.G. Reddy, X. Lv, Z. Pang and C. Bai, Metal. Mater. Trans. B, 2019, vol. 50, pp. 251-61.

    Article  Google Scholar 

  22. T.S. Kim and J.H. Park, ISIJ Int., 2021, vol. 61, pp. 724-33.

    Article  CAS  Google Scholar 

  23. K. Saito, Y. Oshima and M. Hasegawa, ISIJ Int., 2021, vol. 61, pp. 697-704.

    Article  CAS  Google Scholar 

  24. Y. Sun, M. Chen, Z. Cui, L. Contreras and B. Zhao, Metal. Mater. Trans. B, 2020, vol. 51, pp. 2012-20.

    Article  Google Scholar 

  25. G. Wang, Y. Cui, J. Yang, X. Li, S. Yang, J. Zhao and H. Tang, Metal. Mater. Trans. B, 2021, vol. 52B, pp. 1463–71.

    Article  Google Scholar 

  26. S. Sineva, D. Shishin, R. Starykh, P.C. Hayes and E. Jak, J. Sustain. Metal., 2021, in press. https://doi.org/10.1007/s40831-021-00360-4.

  27. J. Wiencke, H. Lavelaine, P.-J. Panteix, C. Petitjean and C. Rapin, Metal. Mater. Trans. B, 2020, vol. 51, pp. 365-76.

    Article  Google Scholar 

  28. M.R. Cicconi, D.R. Neuville, I. Tannou, F. Baudelet, P. Floury, E. Paris and G. Giuli, Am. Mineral., 2015, vol. 100, pp. 1013-6.

    Article  Google Scholar 

  29. M. Hayashi, K. Horita, R. Endo, T. Watanabe and M. Susa, ISIJ Int., 2019, vol. 59, pp. 1744-51.

    Article  CAS  Google Scholar 

  30. C. Weigel, L. Cormier, G. Calas, L. Galoisy and D.T. Bowron, J. Non-Cryst. Solids, 2008, vol. 354, pp. 5378-85.

    CAS  Google Scholar 

  31. I.-K. Suh, K. Sugiyama, Y. Waseda and J. M. Toguri, Zeitschrift für Naturforschung A, 1989, vol. 44, pp. 580-4.

    Article  CAS  Google Scholar 

  32. C. Shi, O.L. G. Alderman, A. Tamalonis, R. Weber, J. You and C.J. Benmore, Communications Materials, 2020, vol. 1, p. 80.

    Article  Google Scholar 

  33. G.S. Henderson, Can. Mineral., 2005, vol. 43, pp. 1921-58.

    Article  CAS  Google Scholar 

  34. T. Osugi, S. Sukenaga, Y. Inatomi, Y. Gonda, N. Saito and K. Nakashima, ISIJ Int., 2013, vol. 53, pp. 185-90.

    Article  CAS  Google Scholar 

  35. S. Sukenaga, T. Osugi, Y. Inatomi, N. Saito and K. Nakashima, J. MMIJ, 2013, vol. 129, pp. 203-7.

    Article  CAS  Google Scholar 

  36. K. Nagata and M. Hayashi, J. Non-Cryst. Solids, 2001, vol. 282, pp. 1-6.

    CAS  Google Scholar 

  37. V. Magnien, D. R. Neuville, L. Cormier, J. Roux, J. L. Hazemann, D. de Ligny, S. Pascarelli, I. Vickridge, O. Pinet and P. Richet, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2157-68.

    Article  CAS  Google Scholar 

  38. Y. Takeda, S. Nakazawa and A. Yazawa, Can. Metall. Q., 1980, vol. 19, pp. 297-305.

    Article  CAS  Google Scholar 

  39. V. Magnien, D. R. Neuville, L. Cormier, J. Roux, J. L. Hazemann, O. Pinet and P. Richet, J. Nucl. Mater., 2006, vol. 352, pp. 190-5.

    Article  CAS  Google Scholar 

  40. T.S. Kim and J.H. Park, J. Non-Cryst. Solids, 2020, vol. 542, p. 120089.

    CAS  Google Scholar 

  41. M. Suzuki, H. Serizawa and N. Umesaki, ISIJ Int., 2020, vol. 60, pp. 2765-72.

    Article  CAS  Google Scholar 

  42. K. Kato, A. Masuno and H. Inoue, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 6495-500.

    Article  CAS  Google Scholar 

  43. J. Chen, M. Shevchenko, P.C. Hayes and E. Jak, ISIJ Int., 2019, vol. 59, pp. 795-804.

    Article  CAS  Google Scholar 

  44. S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi and M. Takata, J. Phys.: Condens. Matter, 2007, vol. 19, p. 506101.

    Google Scholar 

  45. K. Ohara, Y. Onodera, S. Kohara, C. Koyama, A. Masuno, A. Mizuno, J.T. Okada, S. Tahara, Y. Watanabe, H. Oda, Y. Nakata, H. Tamaru, T. Ishikawa and O. Sakata, Int. J. Microgravity Sci. Appl., 2020, vol. 37, p. 370202.

    Google Scholar 

  46. C. Weigel, L. Cormier, L. Galoisy, G. Calas, D. Bowron and B. Beuneu, Appl. Phys. Lett., 2006, vol. 89, p. 141911.

    Article  Google Scholar 

Download references

Acknowledgments

This experiment was carried out at the BL04B2 beamline at SPring-8 with the approval of JASRI (Proposal No. 2017B1400). This work was performed under the “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials” from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This work was partially supported by JSPS KAKENHI (Grant Number 19K05106). S.S. would like to thank Dr. Daniel R. Neuville (Institut de Physique du Globe de Paris) for fruitful discussions on the viscosity variation of the CF melt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohei Sukenaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on March 11, 2021; accepted May 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukenaga, S., Ohara, K., Yamada, H. et al. Reconsideration of Viscosity Variation Mechanism in Calcium Ferrite Melt During Isothermal Melting Process. Metall Mater Trans B 52, 1945–1949 (2021). https://doi.org/10.1007/s11663-021-02227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02227-1

Navigation