Skip to main content
Log in

Tellurium, from Copper Anode Slime to High Purity Product: A Review Paper

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Tellurium is a rare metalloid that is vastly produced from copper anode slime, which is a by-product of the copper electrorefining process. Choosing the proper recovery method strongly depends on the slimes composition, mineralogy, and tellurium concentration. In addition, correctly selecting the right method of leaching, purification, and precipitation in economic and environmental processing of the variety of copper anode slimes very much depends on having a thorough understanding of the chemistry, thermodynamics, and kinetics of the recovery process. Despite a wide variety of developments in the recovery of slime, a lack of comprehensive study to help identify the effective factors in the selection of the right process is evident. This article provides a comprehensive literature review on the available tellurium recovering processes from copper anode slime to the final high purity product. This overview is written, hoping to help researchers select and apply the appropriate method in the recovery of tellurium from copper anode slimes of different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.K. Guillory: Book Review of CRC Handbook of Chemistry and Physics., ACS Publications, Boca Raton, 2009.

    Google Scholar 

  2. S. Wang: Jom, 2011, vol. 63, p. 90.

    Google Scholar 

  3. D. Medina-Cruz, W. Tien-Street, A. Vernet-Crua, B. Zhang, X. Huang, A. Murali, J. Chen, Y. Liu, J.M. Garcia-Martin, and J.L. Cholula-Díaz: in Racing for the Surface, Springer, 2020, pp. 723–83.

  4. F. Habashi: Handbook of Extractive Metallurgy, Wiley-Vch, Ne York, 1997.

    Google Scholar 

  5. K. Zweibel: Science, 2010, vol. 328, pp. 699–701.

    CAS  Google Scholar 

  6. 6S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, and Y. Pei: Nat. Commun., 2016, vol. 7, pp. 1–6.

    Google Scholar 

  7. U.S.G.S.& O. S and U.S.G. Survey: Mineral Commodity Summaries, 2009–2019, Government Printing Office.

  8. SMM: Bismuth Selenium Tellurium. https://price.metal.com/Bismuth-Selenium-Tellurium. Accessed 14 September 2019.

  9. R.L. Moss, E. Tzimas, H. Kara, P. Willis, and J. Kooroshy: Publ. Off. Eur. Union, Luxemb.

  10. 10P. Halli, B.P. Wilson, T. Hailemariam, P. Latostenmaa, K. Yliniemi, and M. Lundström: J. Appl. Electrochem., 2020, vol. 50, pp. 1–14.

    CAS  Google Scholar 

  11. 11M. Filella: Environ. Chem., 2019, vol. 16, pp. 213–4.

    CAS  Google Scholar 

  12. O.P. Missen, R. Ram, S.J. Mills, B. Etschmann, F. Reith, J. Shuster, D.J. Smith, and J. Brugger: Earth-Science Rev., 2020, vol. 204, p. 103150.

  13. M.E. Schlesinger, K.C. Sole, and W.G. Davenport: Extractive Metallurgy of Copper, Elsevier, Amsterdam, 2011.

    Google Scholar 

  14. M. Mokmeli: University of British Columbia, 2014.

  15. 15J.E. Hoffmann: Jom, 1989, vol. 41, pp. 33–8.

    CAS  Google Scholar 

  16. Nicico: Anode Slime Composition. http://nicico.com/index.jsp?pageid=144. Accessed 4 October 2019.

  17. Alibaba: Arsenic Prices. https://www.alibaba.com/showroom/arsenic-price.html. Accessed 12 April 2020.

  18. Alibaba: Tellurium Prices. https://www.alibaba.com/showroom/tellurium-metal-price.html. Accessed 12 April 2020.

  19. Alibaba: Selenium prices. https://www.alibaba.com/showroom/selenium-powder-price.html. Accessed 12 April 2020.

  20. Argus: Antimony Prices. https://www.argusmedia.com/metals-platform/metal/minor-and-specialty-metals-antimony. Accessed 12 April 2020.

  21. Argus: Bismuth Prices. https://www.argusmedia.com/metals-platform/metal/minor-and-specialty-metals-bismuth. Accessed 12 April 2020.

  22. LME: LME Prices. https://www.lme.com/. Accessed 12 April 2020.

  23. J. Backstrom: Lulea University of Technology 2010.

  24. X. Wang, Q. Chen, Z. Yin, M. Wang, B. Xiao, and F. Zhang: Hydrometallurgy, 2011, vol. 105, pp. 355–8.

    CAS  Google Scholar 

  25. E.N. Petkova: Hydrometallurgy, 1990, vol. 24, pp. 351–9.

    CAS  Google Scholar 

  26. W.D. Xing, S.H. Sohn, and M.S. Lee: Miner. Process. Extr. Metall. Rev., 2020, vol. 41, pp. 130–43.

    CAS  Google Scholar 

  27. J. Hait, R.K. Jana, and S.K. Sanyal: Miner. Process. Extr. Metall., 2009, vol. 118, pp. 240–52.

    CAS  Google Scholar 

  28. T.T. Chen and J.E. Dutrizac: Can. Metall. Q., 1988, vol. 27, pp. 97–105.

    CAS  Google Scholar 

  29. T.T. Chen and J.E. Dutrizac: JoM, 1990, vol. 42, pp. 39–44.

    CAS  Google Scholar 

  30. J. Lee, K. Kurniawan, K.W. Chung, and S. Kim: Met. Mater. Int., 2020. https://doi.org/10.1007/s12540-020-00716-7

  31. G. Rayner-Canham and T. Overton: Descriptive Inorganic Chemistry, Macmillan, London, 2009.

    Google Scholar 

  32. F.A. Devillanova and W.-W. Du Mont: Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, vol. 1, Royal Society of Chemistry, London, 2013.

    Google Scholar 

  33. 33N. Belzile and Y.-W. Chen: Appl. Geochemistry, 2015, vol. 63, pp. 83–92.

    CAS  Google Scholar 

  34. 34M. Mokmeli, B. Wassink, and D. Dreisinger: Hydrometallurgy, 2013, vol. 139, pp. 13–25.

    CAS  Google Scholar 

  35. 35M. Mokmeli, D. Dreisinger, and B. Wassink: Hydrometallurgy, 2015, vol. 153, pp. 12–20.

    CAS  Google Scholar 

  36. J.E. Hoffmann and M.G. King: Selenium and Selenium Compounds, Wiley Online Library, 2000.

  37. W.A. Dutton and W.C. Cooper: Chem. Rev., 1966, vol. 66, pp. 657–75.

    CAS  Google Scholar 

  38. M. Mokmeli, D. Dreisinger, and B. Wassink: Hydrometallurgy, 2014, vol. 147, pp. 20–9.

    Google Scholar 

  39. D.C. McPhail: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 851–66.

    CAS  Google Scholar 

  40. H.S.C. Outotec: Version, 6, vol. 6.

  41. S. Wang, B. Wesstrom, and J. Fernandez: J. Miner. Mater. Charact. Eng., 2003, vol. 2, pp. 53–64.

    Google Scholar 

  42. J. Marsden and I. House: The Chemistry of Gold Extraction, SME, 2006.

  43. Z. Sun and Y. Zheng: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 665–72.

    CAS  Google Scholar 

  44. H. Pasdar, B. HedayatiSaghavaz, and M. Masoumi: Int. J. New Chem., 2019, vol. 6, pp. 143–50.

    CAS  Google Scholar 

  45. Google Patents, 5,271,909, 1993.

  46. K.-I. Rhee, C.K. Lee, Y.-C. Ha, G.-J. Jeong, H.-S. Kim, and H.-J. Sohn: Hydrometallurgy, 1999, vol. 53, pp. 189–201.

    CAS  Google Scholar 

  47. C.-K. Lee, K.-I. Rhee, and H.-J. Sohn: J. Korean Inst. Resour. Recycl., 1997, vol. 6, pp. 41–5.

    CAS  Google Scholar 

  48. W.C. Cooper: JoM, 1990, vol. 42, pp. 45–9.

    CAS  Google Scholar 

  49. T. Furuzono, A. Fujimoto, T. Takeuchi, and K. Takebayashi: in Extraction, 2018, Springer, 2018, pp. 2075–83.

  50. J. Hait, R.K. Jana, V. Kumar, and S.K. Sanyal: Ind. Eng. Chem. Res., 2002, vol. 41, pp. 6593–9.

    CAS  Google Scholar 

  51. 51Z. Ma, H. Yang, S. Huang, Y. Lü, and L. Xiong: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 582–8.

    CAS  Google Scholar 

  52. S. Seisko, J. Aromaa, P. Latostenmaa, O. Forsen, B. Wilson, and M. Lundström: Physicochem Probl Min Pr, 2017, vol. 53, pp. 465–74.

    CAS  Google Scholar 

  53. M.A. Fernández, M. Segarra, and F. Espiell: Hydrometallurgy, 1996, vol. 41, pp. 255–67.

    Google Scholar 

  54. X. Guo, Z. Xu, D. Li, Q. Tian, R. Xu, and Z. Zhang: Hydrometallurgy, 2017, vol. 171, pp. 355–61.

    CAS  Google Scholar 

  55. J.E. Hoffmann and B. Wesstrom: in Hydrometallurgy’94, Springer, 1994, pp. 69–105.

  56. J.E. Hoffmann: JoM, 1990, vol. 42, p. 38.

    Google Scholar 

  57. C.G. Wilber: Clin. Toxicol., 1980, vol. 17, pp. 171–230.

    CAS  Google Scholar 

  58. M. Vinceti, E.T. Wei, C. Malagoli, M. Bergomi, and G. Vivoli: Rev. Environ. Health, 2001, vol. 16, pp. 233–52.

    CAS  Google Scholar 

  59. H. Qin, J. Zhu, L. Liang, M. Wang, and H. Su: Environ. Int., 2013, vol. 52, pp. 66–74.

    CAS  Google Scholar 

  60. Z. Dong, T. Jiang, B. Xu, J. Yang, Y. Chen, Q. Li, and Y. Yang: Chem. Eng. J., 2020, vol. 393, p. 124762.

  61. Google Patents, 5,160,588, 1992.

  62. Google Patents, 5,939,042, 1999.

  63. L. Shao, J. Diao, C. Ji, and G. Li: Hydrometallurgy, 2020, vol. 191, p. 105205.

    CAS  Google Scholar 

  64. M. Al-Harahsheh and S.W. Kingman: Hydrometallurgy, 2004, vol. 73, pp. 189–203.

    CAS  Google Scholar 

  65. A. Robles-Vega, V.M. Sanchez-Corrales, and F. Castillon-Barraza: Mining, Metall. Explor., 2009, vol. 26, pp. 169–73.

    CAS  Google Scholar 

  66. Google Patents, 8,268,285, 2012.

  67. 67H. Nagai, E. Shibata, and T. Nakamura: Hydrometallurgy, 2017, vol. 169, pp. 282–9.

    CAS  Google Scholar 

  68. Google Patents, 9,630,844, 2017.

  69. S.A. Awe, J.-E. Sundkvist, N.-J. Bolin, and Å. Sandström: Miner. Eng., 2013, vol. 49, pp. 45–53.

    CAS  Google Scholar 

  70. O. Celep, İ. Alp, and H. Deveci: Hydrometallurgy, 2011, vol. 105, pp. 234–9.

    CAS  Google Scholar 

  71. C. Lottering, J.J. Eksteen, and N. Steenekampt: J. South. African Inst. Min. Metall., 2012, vol. 112, pp. 287–94.

    CAS  Google Scholar 

  72. E. Jackson: Hydrometallurgical Extraction and Reclamation, Chichester: Horwood; New York et al.: Wiley, 1986.

    Google Scholar 

  73. J. Zhong, G. Wang, J. Fan, Q. Li, M. Kiani, J. Zhang, H. Yang, J. Chen, and R. Wang: Hydrometallurgy, 2018, vol. 176, pp. 17–25.

    CAS  Google Scholar 

  74. G. Broderick, B. Handle, and P. Paschen: Metall. Mater. Trans. B, 1999, vol. 30, pp. 5–13.

    CAS  Google Scholar 

  75. Y.-C. Ha, H.-J. Sohn, G.-J. Jeong, C.K. Lee, and K.-I. Rhee: J. Appl. Electrochem., 2000, vol. 30, pp. 315–22.

    CAS  Google Scholar 

  76. B. Handle, G. Broderick, and P. Paschen: Hydrometallurgy, 1997, vol. 46, pp. 105–20.

    CAS  Google Scholar 

  77. Z. Xu, X. Guo, Q. Tian, D. Li, Z. Zhang, and L. Zhu: Hydrometallurgy, 2020, vol. 193, p. 105316.

  78. W. Jin, J. Su, S. Chen, P. Li, M.S. Moats, G. Maduraiveeran, and H. Lei: Sep. Purif. Technol., 2018, vol. 203, pp. 117–23.

    CAS  Google Scholar 

  79. Y. Fan, L. Jiang, J. Yang, Y. Jiang, and F. Liu: J. Electroanal. Chem., 2016, vol. 771, pp. 17–22.

    CAS  Google Scholar 

  80. M.B. Grishechkin, E.N. Mozhevitina, A. V Khomyakov, M.P. Zykova, R.I. Avetisov, and I.K. Avetissov: Russ. Microelectron., 2017, vol. 46, pp. 551–6.

    CAS  Google Scholar 

  81. Z. Yang and P. Lucas: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2920–3.

    CAS  Google Scholar 

  82. A. Zaiour, K. Zahraman, M. Roumie, J. Charara, A. Fawaz, F. Lmai, and M. Hage-Ali: Mater. Sci. Eng. B, 2006, vol. 131, pp. 54–61.

    CAS  Google Scholar 

  83. N.R. Munirathnam, D.S. Prasad, J. V Rao, and T.L. Prakash: Bull. Mater. Sci., 2005, vol. 28, pp. 309–11.

    CAS  Google Scholar 

  84. D.S. Prasad, N.R. Munirathnam, J. V Rao, and T.L. Prakash: Mater. Lett., 2005, vol. 59, pp. 2035–8.

    CAS  Google Scholar 

  85. A.M. Hageman, M.J. Harrison, N. Fritz, T.N. Krehbiel, R. White, J. Patenaude, and D.S. McGregor: in Penetrating Radiation Systems and Applications VIII, vol. 6707, International Society for Optics and Photonics, 2007, p. 67070Z.

  86. N.R. Munirathnam, D.S. Prasad, C. Sudheer, A.J. Singh, and T.L. Prakash: Bull. Mater. Sci., 2002, vol. 25, pp. 79–83.

    CAS  Google Scholar 

  87. N.R. Munirathnam, D.S. Prasad, C. Sudheer, and T.L. Prakash: J. Cryst. Growth, 2003, vol. 254, pp. 262–6.

    CAS  Google Scholar 

  88. M. Shim, Y.-M. Kim, H.-H. Lee, S.-J. Hong, and J.-H. Lee: J. Cryst. Growth, 2016, vol. 455, pp. 6–12.

    CAS  Google Scholar 

  89. A. Zaiour and B. Hamdoun: Phys. Scr., 2004, vol. 70, p. 193.

    CAS  Google Scholar 

  90. N.A. Potolokov and V.A. Fedorov: Inorg. Mater., 2012, vol. 48, pp. 1082–7.

    CAS  Google Scholar 

  91. Google Patents, 5,513,834, 1996.

  92. L. Kuchař, J. Drápala, and J. Luňáček: J. Cryst. Growth, 1996, vol. 161, pp. 94–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mokmeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 20, 2020; September 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, A., Shakibania, S., Mokmeli, M. et al. Tellurium, from Copper Anode Slime to High Purity Product: A Review Paper. Metall Mater Trans B 51, 2555–2575 (2020). https://doi.org/10.1007/s11663-020-01974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01974-x

Navigation