Skip to main content
Log in

The Oxidation Mechanism of Pure Magnesium Powder Particles: A Mathematical Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the mechanism of nonisothermal oxidation of magnesium powder was determined using a tension analysis, which was performed by mathematical modeling and the finite element method. The results revealed that phase transformation of magnesium hydroxide to magnesium oxide in the oxide layer plays an important role in this process so that formation of magnesium hydroxide in the early stages of oxidation (< 450 °C) leads to the formation of compressive stresses through the oxide layer, and as a result, the beginning of measurable oxidation is delayed. The results obtained by the mathematical model and finite element method were validated by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.T. Huang, M.S. Zou, X.Y. Guo, R.J. Yang, Y.K. Li, E.Z. Jiang, and Z.S. Li: J. Energy Mater., 2014, vol. 32, pp. 37–41.

    Article  Google Scholar 

  2. T.S. Ward, M.A. Trunov, M. Schoenitz, and E.L. Dreizin: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 4943–54.

    Article  Google Scholar 

  3. Y. Chunmiao, Y. Lifu, L. Chang, L. Gang, and Z. Shengjun: J. Hazard. Mater., 2013, vol. 260, pp. 707–14.

    Article  Google Scholar 

  4. M. Mittal: J. Loss Prev. Process Ind., 2014, vol. 27, pp. 55–64.

    Article  Google Scholar 

  5. T. Miller and J. Herr: 40th AIAA/ASME/SAE/ASEE Jt. Propul. Conf. Exhib., 2004, pp. 1–10.

  6. E.T. Sandall, J. Kalman, J.N. Quigley, S. Munro, and T.D. Hedman: Propul. Power Res., 2017, vol. 6, pp. 243–52.

    Article  Google Scholar 

  7. H. Nie, M. Schoenitz, and E.L. Dreizin: J. Phys. Chem. C, 2016, vol. 120, pp. 974–83.

    Article  Google Scholar 

  8. Y. Aly, V.K. Hoffman, M. Schoenitz, and E.L. Dreizin: J. Propul. Power, 2014, vol. 30, pp. 96–104.

    Article  Google Scholar 

  9. R. Lomba, S. Bernard, P. Gillard, C. Mounaïm-Rousselle, F. Halter, C. Chauveau, T. Tahtouh, and O. Guézet: Combust. Sci. Technol., 2016, vol. 188, pp. 1857–77.

    Article  Google Scholar 

  10. E.S. Freeman and C. Campbell: Trans. Faraday Soc., 1963, vol. 59, p. 165.

    Article  Google Scholar 

  11. S. Yuasa, M. Kawashima, and T. Sakurai: Proc. Combust. Inst., 2009, vol. 32 (II), pp. 1929–36.

  12. T.S. Shih, J.B. Liu, and P.S. Wei: Mater. Chem. Phys., 2007, vol. 104, pp. 497–504.

    Article  Google Scholar 

  13. C. Liu, S. Lu, Y. Fu, and H. Zhang: Corros. Sci., 2015, vol. 100, pp. 177–85.

    Article  Google Scholar 

  14. T.-S. Shih and Z.-B. Liu: Mater. Trans., 2006, vol. 47, pp. 1347–53.

    Article  Google Scholar 

  15. R. Sharma, M.J. McKelvy, H. Béarat, A.V.G. Chizmeshya, and R.W. Carpenter: Philos. Mag., 2004, vol. 84, pp. 2711–29.

    Article  Google Scholar 

  16. A. Mujumdar, D. Wei, R.N. Dave, R. Pfeffer, and C.Y. Wu: Powder Technol., 2004, vol. 140, pp. 86–97.

    Article  Google Scholar 

  17. H. Naono: Coll. Surf., 1989, vol. 37, pp. 55–70.

    Article  Google Scholar 

  18. V. Rosenband, A. Gany, and Y.M. Timnat: Combust. Sci. Technol., 1995, vol. 105, pp. 279–94.

    Article  Google Scholar 

  19. V.I. Rozenband and N.I. Vaganova: Combust. Flame, 1992, vol. 88, pp. 113–18.

    Article  Google Scholar 

  20. V. Rosenband, A. Gany, and Y.M. Timnat: Oxid. Met., 1995, vol. 43, pp. 141–56.

    Article  Google Scholar 

  21. S. Hasani, M. Panjepour, and M. Shamanian: Oxid. Met., 2012, vol. 78, pp. 179–95.

    Article  Google Scholar 

  22. S. Hasani, M. Panjepour, and M. Shamanian: Oxid. Met., 2013, vol. 81, pp. 299–313.

    Article  Google Scholar 

  23. S. Hasani, A.P. Soleymani, M. Panjepour, and A. Ghaei: Oxid. Met., 2014, vol. 82, pp. 209–24.

    Article  Google Scholar 

  24. V. Rosenband: Combust. Flame, 2004, vol. 137, pp. 366–75.

    Article  Google Scholar 

  25. V. Rosenband, B. Natan, and A. Gany: J. Propul. Power, 1995, vol. 11, pp. 1125–31.

    Article  Google Scholar 

  26. V. Rosenband and A. Gany: Combust. Sci. Technol., 2001, vol. 166, pp. 91–108.

    Article  Google Scholar 

  27. Q. Tan, A. Atrens, N. Mo, and M.X. Zhang: Corros. Sci., 2016, vol. 112, pp. 734–59.

    Article  Google Scholar 

  28. H. Yamagishi, M. Fukuhara, and A. Chiba: Mater. Trans., 2010, vol. 51, pp. 2025–32.

    Article  Google Scholar 

  29. F. Jiang, S. Speziale, and T.S. Duffy: Am. Mineral., 2006, vol. 91, pp. 1893–1900.

    Article  Google Scholar 

  30. O. Madelung, U. Rössler, and M. Schulz, eds.: Magnesium Oxide (MgO) Young’s, Shear and Bulk Moduli, Poisson’s Ratio, 1st ed., vols. III/17B-22A-41B, Springer Materials—The Landolt-Bornstein, Database, 1999.

  31. M. Chase: NIST-JANAF Thermochemical Tables, 4th ed., American Institute of Physics, Washington, DC, 1998.

    Google Scholar 

  32. Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian: Chem. Mater., 2001, vol. 13, pp. 435–40.

    Article  Google Scholar 

  33. T.C. Chawla, M.G. Chasanov, D.R. Pedersen, L. Baker, and J.D. Bingle: Nucl. Eng. Des., 1984, vol. 80, pp. 65–77.

    Article  Google Scholar 

  34. S.A.T. Redfern and B.J. Wood: Am. Mineral., 1992, vol. 77, pp. 1129–32.

    Google Scholar 

  35. J.B. Austin: Physics (College Park Md.), 1932, vol. 3, pp. 240–67.

    Google Scholar 

  36. J. Pelleg: Mechanical Properties of Ceramics, Springer International Publishing, Cham, 2014, vol. 213.

  37. X. Dong, X. Feng, and K.-C. Hwanga: Chem. Phys. Lett., 2014, vol. 614, pp. 95–98.

    Article  Google Scholar 

  38. H. Saleh, T. Weling, J. Seidel, M. Schmidtchen, R. Kawalla, F.O.R.L. Mertens, and H.-P. Vogt: Oxid. Met., 2014, vol. 81, pp. 529–48.

    Article  Google Scholar 

  39. S. Feliu, A.A. El Hadad, V. Barranco, I. Llorente, F.R. García-Galván, A. Jiménez-Morales, and J.C. Galván: New Trends in Alloy Development, Characterization and Application, InTech, 2015, pp. 97–123.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hasani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimpour, M., Eatezadi, S.R., Hasani, S. et al. The Oxidation Mechanism of Pure Magnesium Powder Particles: A Mathematical Approach. Metall Mater Trans B 50, 1597–1607 (2019). https://doi.org/10.1007/s11663-019-01588-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01588-y

Navigation