Skip to main content
Log in

Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO2-MgO-Al2O3 Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The viscosities of the MnO (0 to 55 mass pct)-CaO-SiO2-MgO (5 mass pct)-Al2O3 (20 mass pct) melts were measured by rotating cylinder method in the temperature range from 1573 K to 1873 K (1300 °C to 1600 °C). The measurements were carried out in the atmosphere of flowing CO/CO2 gas mixture with a volume ratio of 99/1, and molybdenum crucible and spindle were adopted. The results reveal that MnO is a viscosity reducing component, and the effect of MnO is more notable in the melts with higher ratio of CaO to SiO2. For example, in the melts with the mass ratio of CaO to SiO2 equal to 0.6, the addition of 5 mass pct MnO only slightly reduced the viscosities. Comparatively, the addition of 5 mass pct MnO made the viscosities of the melts with the mass ratio of CaO to SiO2 equal to 1.0 and 1.5 decrease remarkably. Based on the measured data, the viscosities estimation model proposed in our previous study was extended to the system containing MnO, and the model parameters were determined. The model can estimate and predict the viscosities of the aluminosilicate melts containing MnO well, and then some iso-viscosity contours of this system were calculated. From the iso-viscosity contours, it can be seen that MnO is almost equivalent to CaO in reducing the viscosities in the melt with high SiO2 content, while with the decrease of the SiO2 content MnO becomes more effective than CaO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 28, pp. 310–16.

    Article  Google Scholar 

  2. R. Riedel, L.M. Ruswisch, L. An, and R. Raj: J. Am. Ceram. Soc., 1998, vol. 81, pp. 3341-44.

    Article  Google Scholar 

  3. A.L. Jennifer: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2341-59.

    Google Scholar 

  4. F.Z. Ji, S. Du and S. Seetharaman: Ironmaking and Steelmaking, 1998, vol. 25, pp. 309-16.

    Google Scholar 

  5. F.Z. Ji: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 181-86.

    Article  Google Scholar 

  6. F.Z. Ji, S. Su and S. Seetharaman: International Journal of Thermophysics, 1999,, vol. 20, pp. 309-23.

    Article  Google Scholar 

  7. S. Sridhar, S.Du, S. Seetharaman et al: Steel Res. Int., 2001, vol. 72, pp. 3-10.

    Article  Google Scholar 

  8. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 187-95.

    Article  Google Scholar 

  9. Q.F. Shu, X.J. Hu, B.J. Yan et al: Ironmaking and Steelmaking, 2010, vol. 37, pp. 387-91.

    Article  Google Scholar 

  10. G.H. Zhang, K.C. Chou, Q.G. Xue et al: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 64-72.

    Article  Google Scholar 

  11. L.N. Josue, R.S. Antonio, H.R. Aurelio: ISIJ Int., 2018, vol. 58, pp. 220-26.

    Article  Google Scholar 

  12. W.L. Wang, J. Yu, L.J. Zhou et al.: Metall. Mater. Trans. B, 2019, vol. 49B, pp. 1580-87.

    Google Scholar 

  13. R.Z. Xu, J.L. Zhang, X.Y. Fan et al.: ISIJ Int., 2017, vol. 57, pp. 1887-94.

    Article  Google Scholar 

  14. H.B. Zuo, C. Wang, C.F. Xu et al.: Ironmaking Steelmaking, 2015, vol. 43, pp. 56-63.

    Article  Google Scholar 

  15. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 177-86.

    Article  Google Scholar 

  16. J.O. Bockris and D.C. Lowe: P. Roy. Soc. Lond. A Mat., 1954, vol. 233, pp. 423-35.

    Google Scholar 

  17. J. Muller, J.H. Zietsman and P.C. Pistorius: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2639-51.

    Article  Google Scholar 

  18. Verlag Stahleisen GmbH: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995.

    Google Scholar 

  19. Q.F. Shu, Z. Wang, and K.C. Chou: Steel Res. Int., 2011, vol. 82, pp. 779-85.

    Article  Google Scholar 

  20. G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Ac., 1982, vol. 46, pp. 1061-72.

    Article  Google Scholar 

  21. M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Ac., 2004, vol. 68, pp. 5169-88.

    Article  Google Scholar 

  22. S. Seetharaman, D Sichen, and F.Z. Ji: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 827-34.

    Google Scholar 

  23. J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol.35, pp. 322-25.

    Article  Google Scholar 

  24. H.D. Weymann: J. Am. Ceram. Soc., 1962, vol. 45, pp. 517-22.

    Article  Google Scholar 

  25. D Sichen, J. Bygden, and S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 1-7.

    Google Scholar 

  26. P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachber. Huttenprax. Metallweiterverarb., 1981, vol.19, pp. 859-69.

    Google Scholar 

  27. T. Iida, H. Sakai, Y. Kita, and K. Murakami: ISIJ Int., 2000, vol. 40, pp. 110-14.

    Article  Google Scholar 

  28. K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-68.

    Article  Google Scholar 

  29. K.C. Mills, L. Chapman, A.B. Fox, and S. Sridhar: Scand. J. Metall., 2010, vol. 30, pp. 396-403.

    Article  Google Scholar 

  30. Q.F. Shu and J.Y. Zhang: ISIJ Int., 2006, vol. 46, pp. 1548-53.

    Article  Google Scholar 

  31. Z. Wang, Q.F. Shu, and K.C. Chou: ISIJ Int., 2011, vol. 51, pp. 1021-27.

    Article  Google Scholar 

  32. M.H. Song, Q.F. Shu, and D. Sichen: Steel Res. Int., 2011, vol. 82, pp. 260-67.

    Article  Google Scholar 

  33. C.J.B. Fincham and F.D. Richardson: P. Roy. Soc. Lond. A Mat., 1954, vol. 223, pp. 29-40.

    Article  Google Scholar 

  34. Q.F. Shu: Steel Res. Int., 2009, vol. 80, pp. 107-12.

    Google Scholar 

Download references

Acknowledgments

The financial supports on the projects 51774025, 51534001, and 51502230 from the National Natural Science Foundation of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baijun Yan or Qifeng Shu.

Additional information

Manuscript submitted May 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Liu, Y., Shu, Q. et al. Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO2-MgO-Al2O3 Melts. Metall Mater Trans B 50, 376–384 (2019). https://doi.org/10.1007/s11663-018-1454-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1454-x

Keywords

Navigation