Skip to main content
Log in

Thermodynamic and Structural Study of the Copper-Aluminum System by the Electrochemical Method Using a Copper-Selective Beta″ Alumina Membrane

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The liquid phase thermodynamics of mixing of the copper-aluminum binary system are investigated as a function of temperature and composition using the electrochemical potential difference method. A copper-selective beta″ alumina is used as a solid electrolyte, synthesized through ion exchange, sintering from base oxide powders, and the floating zone method of crystal growth. Measured thermodynamics of mixing data were used to inform short-range ordering in copper-aluminum melts through Darken’s factor for excess stability and Bhatia–Thornton structure factors, revealing a strong departure from ideality and pronounced ordering. Mixing properties were used to predict viscosity and self-diffusion coefficients. Features observed in calculated electronic entropy of mixing for copper-aluminum were compared with trends in viscosity, demonstrating the utility of electronic properties of mixing in the description of structure–properties in this liquid binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M.T. Di Giovanni, E. Cerri, T. Saito, S. Akhtar, P. Åsholt, Y. Li, and M. Di Sabatino: Metall. Ital., 2016, vol. 108, pp. 43–7.

    Google Scholar 

  2. R.A. Gonçalves and M.B. da Silva: Procedia Manuf., 2015, vol. 1, pp. 683–95.

    Article  Google Scholar 

  3. B. Upton: Corrosion, 1963, vol. 19, p. 204t–209t.

    Article  CAS  Google Scholar 

  4. Y. Li, T.L. Ngai, and W. Xia: Wear, 1996, vol. 197, pp. 130–6.

    Article  CAS  Google Scholar 

  5. M. Založnik, B. Sarler, and D. Gobin: Mater. Tehnol., 2004, vol. 38, pp. 249–55.

    Google Scholar 

  6. G. Gaustad, E. Olivetti, and R. Kirchain: Resour. Conserv. Recycl., 2012, vol. 58, pp. 79–87.

    Article  Google Scholar 

  7. S.R. Wagstaff: J. Sib. Fed. Univ. Eng. Technol., 2018, vol. 11, pp. 409–18.

    Article  Google Scholar 

  8. N. Saunders: in COST 507 Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., vol. 2, 1998, pp. 28–33.

  9. A.I. Zaitsev, R.Y. Shimko, N.A. Arutyunyan, and S.F. Dunaev: Dokl. Phys. Chem., 2007, vol. 414, pp. 115–9.

    Article  CAS  Google Scholar 

  10. H. Oyamada, T. Nagasaka, and M. Hino: Mater. Trans. JIM, 1998, vol. 39, pp. 1225–9.

    Article  CAS  Google Scholar 

  11. D.S. Kanibolotsky, O.A. Bieloborodova, N. V Kotova, and V. V Lisnyak: J. Therm. Anal. Calorim., 2002, vol. 70, pp. 975–83.

    Article  Google Scholar 

  12. U.K. Stolz, I. Arpshofen, F. Sommer, and B. Predel: J. Phase Equilibria, 1993, vol. 14, pp. 473–8.

    Article  CAS  Google Scholar 

  13. M. Schick, J. Brillo, I. Egry, and B. Hallstedt: J. Mater. Sci., 2012, vol. 47, pp. 8145–52.

    Article  CAS  Google Scholar 

  14. V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd., 2004, vol. 385, pp. 133–43.

    CAS  Google Scholar 

  15. A.S. Roik, V.P. Kazimirov, and V.E. Sokolskii: Russ. Metall., 2014, vol. 2014, pp. 23–32.

    Article  Google Scholar 

  16. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, and D. Zanghi: J. Non. Cryst. Solids, 2006, vol. 352, pp. 4008–12.

    Article  CAS  Google Scholar 

  17. J. Dziedzic, S. Winczewski, and J. Rybicki: Comput. Mater. Sci., 2016, vol. 114, pp. 219–32.

    Article  CAS  Google Scholar 

  18. N. Jakse and A. Pasturel: Phys. Rev. B, 2016, vol. 94, pp. 1–13.

    Article  Google Scholar 

  19. P. Dinsdale and P.N. Quested: J. Mater. Sci., 2004, vol. 9, pp. 7221–8.

    Article  Google Scholar 

  20. J. Schmitz, J. Brillo, I. Egry, and R. Schmid-Fetzer: Int. J. Mat. Res., 2009, vol. 100, pp. 1529–35.

    Article  CAS  Google Scholar 

  21. A.R. Kurochkin, P.S. Popel, D.A. Yagodin, A. V Borisenko, and A. V Okhapkin: High Temp., 2013, vol. 51, pp. 224–32.

    Article  Google Scholar 

  22. N.Y. Konstantinova, A.R. Kurochkin, A. V. Borisenko, V. V. Filippov, and P.S. Popel: Russ. Metall., 2016, vol. 2016, pp. 144–9.

    Article  Google Scholar 

  23. A.M. Vora: Phys. Chem. Liq., 2008, vol. 46, pp. 213–22.

    Article  CAS  Google Scholar 

  24. R.M. Khusnutdinoff, A.V. Mokshin, S.G. Menshikova, A.L. Beltyukov, and V.I. Ladyanov: J. Exp. Theor. Phys., 2016, vol. 122, pp. 859–68.

    Article  CAS  Google Scholar 

  25. M. V. Vaghela, A. Y. Vahora, N.K. Bhatt, B.Y. Thakore, and A.R. Jani: AIP Conf. Proc., 2013, vol. 1536, pp. 637–8.

    Article  CAS  Google Scholar 

  26. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 3040–5.

    Article  CAS  Google Scholar 

  27. Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin: Solid State Ionics, 2008, vol. 179, pp. 1697–1701.

    Article  CAS  Google Scholar 

  28. H. Kuwamoto and H. Sato: Solid State Ionics, 1981, vol. 5, pp. 187–8.

    Article  CAS  Google Scholar 

  29. N. Weber: Energy Convers., 1974, vol. 14, pp. 1–8.

    Article  CAS  Google Scholar 

  30. T.K. Hunt, N. Weber, and T. Cole: Solid State Ionics, 1981, vol. 5, pp. 263–5.

    Article  CAS  Google Scholar 

  31. S.M. Jeter: Energy, 1987, vol. 12, pp. 163–70.

    Article  CAS  Google Scholar 

  32. D.J. Fray: Met. Trans. B, 1977, vol. 8B, pp. 153–6.

    Article  CAS  Google Scholar 

  33. J. Liu and W. Weppner: Solid State Commun., 1990, vol. 76, pp. 311–3.

    Article  CAS  Google Scholar 

  34. J. Vangrunderbeek, F. Vandecruys, and R. V. Kumar: Solid State Ionics, 2000, vol. 136–137, pp. 567–71.

    Article  Google Scholar 

  35. G. Dorner, H. Durakpasa, P. Linhardt, and M.W. Breitter: Electrochim. Acta, 1991, vol. 36, pp. 563–8.

    Article  CAS  Google Scholar 

  36. R. Kvachkov, A. Yanakiev, C.N. Poulieff, P.D. Yankulov, S. Rashkov, and E. Budevski: Solid State Ionics, 1982, vol. 7, pp. 151–5.

    Article  CAS  Google Scholar 

  37. R.J. Baughman and R.A. Lefever: Mater. Res. Bull., 1975, vol. 10, pp. 607–12.

    Article  CAS  Google Scholar 

  38. M.S. Whittingham and R.A. Huggins: J. Electrochem. Soc., 1971, vol. 118, pp. 1–6.

    Article  CAS  Google Scholar 

  39. J. Briant and G. Farrington: J. Electrochem. Soc., 1981, vol. 128, pp. 1830–4.

    Article  CAS  Google Scholar 

  40. G.M. Crosbie and G.J. Tennenhouse: J. Am. Ceram. Soc., 1982, vol. 65, pp. 187–91.

    Article  CAS  Google Scholar 

  41. Y. Yu Yao and J.T. Kummer: J. Inorg. Nucl. Chem., 1967, vol. 29, pp. 2453–75.

    Article  Google Scholar 

  42. J.A. Little and D.J. Fray: Electrochim. Acta, 1980, vol. 25, pp. 957–64.

    Article  CAS  Google Scholar 

  43. T. Oishi, S. Tagawa, and S. Tanegashima: J. Phys. Chem. Solids, 2005, vol. 66, pp. 251–5.

    Article  CAS  Google Scholar 

  44. J.A. Little and D.J. Fray: Trans. Inst. Min. Metall., 1979, vol. 88, pp. C229–33.

    Google Scholar 

  45. J.D. Barrie, B. Dunn, O.M. Stafsudd, and P. Nelson: J. Lumin. 39: 29-33 (1987).

    Article  Google Scholar 

  46. B. Cleaver and A. Davies: Electrochim. Acta, 1973, vol. 18, pp. 733–9.

    Article  CAS  Google Scholar 

  47. S.K. Kim: J. Korean Ceram. Soc., 1995, vol. 32, pp. 1040–6.

    CAS  Google Scholar 

  48. H. Kim, D.A. Boysen, D.J. Bradwell, B. Chung, K. Jiang, A.A. Tomaszowska, K. Wang, W. Wei, and D.R. Sadoway: Electrochim. Acta, 2012, vol. 60, pp. 154–62.

    Article  CAS  Google Scholar 

  49. M.D. Koretsky: Engineering and Chemical Thermodynamics, 2nd edn., Wiley, Hoboken, 2013.

    Google Scholar 

  50. M.-L. Saboungi, W. Geertsma, and D.L. Price: Annu. Rev. Phys. Chem., 1990, vol. 41, pp. 207–44.

    Article  CAS  Google Scholar 

  51. M. Saboungi, J. Marr, and M. Blander: J. Chem. Phys., 1978, vol. 68, pp. 1375–84.

    Article  CAS  Google Scholar 

  52. C.C. Rinzler and A. Allanore: Philos. Mag., 2016, vol. 96, pp. 3041–53.

    Article  CAS  Google Scholar 

  53. H. Eyring: J. Chem. Phys., 1936, vol. 4, pp. 283–91.

    Article  CAS  Google Scholar 

  54. T. Tanaka, K. Hack, and S. Hara: MRS Bull., 1999, vol. 24, pp. 45–9.

    Article  CAS  Google Scholar 

  55. S. Seetharaman and D. Sichen: Metall. Mater. Trans. B, 1994, vol. 25, pp. 589–95.

    Article  Google Scholar 

  56. J. Brillo: Thermophysical Properties of Multicomponent Liquid Alloys, Walter de Gruyter GmbH & Co KG, Berlin, 2016.

    Book  Google Scholar 

  57. R.N. Singh and F. Sommer: Phys. Chem. Liq., 1998, vol. 36, pp. 17–28.

    Article  CAS  Google Scholar 

  58. H.A. Dabkowska, A.B. Dabkowski, R. Hermann, J. Priede, and G. Gerbeth: in Handbook of Crystal Growth: Bulk Crystal Growth: Second Edition, 2014.

  59. J.L. Murray: Int. Met. Rev., 1985, vol. 30, pp. 211–34.

    Article  CAS  Google Scholar 

  60. G.H. Teichert, N.S.H. Gunda, S. Rudraraju, A.R. Natarajan, B. Puchala, K. Garikipati, and A. Van der Ven: Comput. Mater. Sci., 2017, vol. 128, pp. 127–39.

    Article  CAS  Google Scholar 

  61. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Inc, Cambridge, MA, USA, 1952.

    Google Scholar 

  62. M. Trybuła, N. Jakse, W. Gąsior, and A. Pasturel: Arch. Metall. Mater., 2015, vol. 60, pp. 649–55.

    Article  Google Scholar 

  63. J.-L. Bretonnet, J. Auchet, and J.G. Gasser: J. Non. Cryst. Solids, 1990, vol. 117–118, pp. 395–8.

    Article  Google Scholar 

  64. H.U. Kunzi and H. Guntherodtf: in The Hall Effect and its Applications, C.L. Chien and C.R. Westgate, eds., Springer, New York, NY, 1980, pp. 215–52.

  65. S. Takeuchi and K. Murakami: Sci. Reports Res. Institutes, Tohoku Univ. Ser. A, Physics, Chem. Metall., 1974, vol. 25, pp. 73–86.

    CAS  Google Scholar 

  66. S. Glasstone, K.J. Laider, and H. Eyring: The Theory of Rate Processes; The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, McGraw-Hill, 1941.

    Google Scholar 

  67. R.E. Aune, M. Hayashi, and S. Sridhar: Ironmak. Steelmak., 2005, vol. 32, pp. 141–50.

    Article  CAS  Google Scholar 

  68. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th edn., Pergamon Press, Oxford, 1979.

    Google Scholar 

  69. T. Ejima and T. Yamamura: J. Phys. Colloq., 1980, vol. 41, pp. 345-348.

    Article  Google Scholar 

  70. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The Calphad Method, Cambridge University Press, New York, NY, 2007.

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the MIT UROP Office and the Sanders, Lord, and DeFlorez UROP Funds for their financial support to this project. The authors wish to thank Mr. Andrew Caldwell, Ms. Jaclyn Leigh Cann, Mr. Brian Chmielowiec, Dr. Katsuhiro Nose, and Dr. Youyang Zhao for their insight and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Allanore.

Additional information

Manuscript submitted April 8, 2018.

Appendices

Appendix A: Example of Raw OCP Data

Depicted here is an example of open-circuit potential (OCP) data collected for Cu0.4Al0.6 vs Cu utilizing the copper-selective beta″ alumina (Cuβ″Al2O3) solid electrolyte described in this study. At a given temperature and composition, steady state in OCP readings was achieved within 1800 seconds. Typical standard deviations (SD) in OCP across a measurement period ranged from 0.02 to 2 mV, increasing with higher temperatures (Figure A1).

Fig. A1
figure 21

Sample of OCP data for Cu0.4Al0.6 referenced to Cu collected utilizing Cuβ″Al2O3 after a stabilization period of 1800 s at each temperature

Appendix B

See Table BI.

Table BI Summary of Thermodynamic Values

Appendix C: List of Symbols

\( a \) :

Activity

\( c \) :

Molar concentration

\( D \) :

Self-diffusion coefficient

\( E \) :

Cell potential difference

\( E^{A} \) :

Activation energy for viscous flow

\( ES \) :

Excess stability

\( F \) :

Faraday constant

\( \bar{H} \) :

Partial molar enthalpy

\( k_{B} \) :

Boltzmann’s constant

\( M \) :

Hall mobility

\( r \) :

Radius of diffusing particle

\( R \) :

Ideal gas constant

\( R_{H} \) :

Hall effect coefficient

\( \bar{S} \) :

Partial molar entropy

\( S_{CC} \left( 0 \right) \) :

Bhatia–Thornton structure factor

\( S^{e} \) :

Electronic state entropy

\( T \) :

Absolute temperature

\( x \) :

Mole fraction

\( \bar{Y} \) :

Partial molar quantity

\( z \) :

Number of electrons per copper(I) ion that travels across the Cuβ″Al2O3 membrane

\( \alpha \) :

Seebeck coefficient

\( \Delta G^{M} \) :

Gibbs energy of mixing

\( \Delta H^{M} \) :

Enthalpy of mixing

\( \Delta S^{M} \) :

Entropy of mixing

\( \eta \) :

Dynamic viscosity

\( \eta^{\infty } \) :

Pre-exponential factor for viscous flow

\( \mu \) :

Partial molar Gibbs energy

\( \sigma \) :

Electrical conductivity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinn, C., Allanore, A. Thermodynamic and Structural Study of the Copper-Aluminum System by the Electrochemical Method Using a Copper-Selective Beta″ Alumina Membrane. Metall Mater Trans B 49, 3367–3380 (2018). https://doi.org/10.1007/s11663-018-1400-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1400-y

Keywords

Navigation