Skip to main content
Log in

Engulfment Behavior of Inclusions in High-Carbon Steel: Theoretical and Experimental Investigation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Previous studies on inclusions behavior at the front of the solidifying steel shell have mainly focused on low-carbon steels. However, with the increasing applications of high-carbon steel in recent years because of its superior properties, it is crucial to understand this behavior in high-carbon steel. Most of the high-carbon steels are deoxidized by silicon, calcium treated, and contain higher sulfur percentage. Also, higher carbon content has a determining influence on the viscosity and surface tension, which will affect the inclusion behavior. In this study, we have investigated the engulfment behaviors of inclusions in front of the solidifying interface in high-carbon steels using concentric solidification method. The critical velocity of the growing shell, at which the particle is engulfed in the solidifying shell, instead of being pushed by this shell, was determined. The inclusion identified in this study is a bi-component form of CaO-SiO2-based oxide and CaS. It was revealed that engulfment behavior is strongly affected by convection of liquid steel that originates from carbon push out in high-carbon steels. This study provides new crucial information to produce high-carbon steel with fewer inclusions, which opens new application pathways for this emerging grade of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Okazawa, A. Kiyose, I. Sawada, T. Toh, and E. Takeuchi, Tetsu-to-Hagané, 1996, vol. 82, pp. 749-753.

    Article  CAS  Google Scholar 

  2. U. D. Salgado, S.K. Michelic, and C. Bernhard, Materials science and engineering, 2016, vol. 119, pp. 012003.

    Google Scholar 

  3. S. K. Michelic, U. D. Salgado, and C. Bernhard, Materials science and engineering, 2016, vol. 143, pp. 01201.

    Google Scholar 

  4. Y. Tanaka, F. Pahlevani and V. Sahajwalla, Metal, 2018, vol. 8, pp. 176.

    Article  Google Scholar 

  5. W. Mu, N. Dogan, K. S. Coley, JOM, 2018, vol. 70, pp. 1199-1209.

    Article  CAS  Google Scholar 

  6. S. Michelic, J. Goriupp, S. Feichtinger, Y. Kang, C. Bernhard and J. Schenk, Steel Research International, 2016, vol. 87, pp. 57-67.

    Article  CAS  Google Scholar 

  7. S. Moon, R. Dippenaar, and S. Kim, AISTech 2015 Proc., AIST, Warrendale, PA, 2015.

    Google Scholar 

  8. S. Moon, R. Dippenaar, and S. Lee, Materials science and engineering, 2011, vol. 27, pp. 012061.

    Google Scholar 

  9. B. Khurana, S. Spooner, M. B. V. Rao, G. G. Roy, P. Srirangam, Metallurgical and Materials Transactions B, 2017, vol. 48, pp. 1409-1415.

    Article  Google Scholar 

  10. N. Yuki, H. Shibata, and T. Emi, ISIJ International, 1998, vol. 38, pp. 317-323.

    Article  CAS  Google Scholar 

  11. T. Yoshioka, Y. Shimamura, A. Karasev, Y. Ohba, P.G. Jonsson: in Materials Processing Fundamentals 2018. TMS 2018. The Minerals, Metals & Materials Series, G. Lambotte, J. Lee, A. Allanore, S. Wagstaff, eds., Springer, Cham, 2018.

  12. J. H. Shin, J. H. Park, Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 311-324.

    Article  Google Scholar 

  13. H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki, ISIJ International, 1998, vol. 38, pp. 149-156.

    Article  CAS  Google Scholar 

  14. K. J. Malmberg, H. Shibata, S. Kitamura, P. G. Jonsson, S. Nabeshima, Y. Kishimoto, J Mater Sci., 2010, vol. 45, pp. 2157-2164.

    Article  CAS  Google Scholar 

  15. H. Ohta and H. Suito, ISIJ International, 2006, vol. 46, pp. 22-28.

    Article  CAS  Google Scholar 

  16. H. Ohta and H. Suito, ISIJ International, 2006, vol. 46, pp. 472-479.

    Article  CAS  Google Scholar 

  17. D. M. Stefanescu and A. V. Catalina, ISIJ International, 1998, vol. 38, pp. 503-505.

    Article  CAS  Google Scholar 

  18. M. Reid, D. Phelan and R. Dippenaar, ISIJ International, 2004, vol. 44, pp. 565-572.

    Article  CAS  Google Scholar 

  19. J. Miettinen and A. A. Howe, Ironmaking and Steelmaking, 2000, vol. 27, pp. 212-227.

    Article  CAS  Google Scholar 

  20. Y. Ito, N. Yonezawa and K. Matsubara, Tetsu-to-Hagané, 1979, vol. 65, 391-398.

    Article  CAS  Google Scholar 

  21. D. K. Shangguan, S. Ahuja and D. K. Stefanescu, Metall. Trans. A, 1992, vol. 23, pp. 669-680.

    Article  CAS  Google Scholar 

  22. K. Ogino, and K. Nogi, Tetsu-to-Hagané, 1973, vol. 59, pp. 1380-1387.

    Article  CAS  Google Scholar 

  23. N. Shinozaki, K. Fujiike, K. Mori and K. Kawai, Technol. Rept. Kyushu Univ., 1989, vol. 62, pp. 573.

    Google Scholar 

  24. H. Sun, N. Yoneda, K. Nakashima and K. Mori, Tetsu-to-Hagané, 1997, vol. 83, pp. 1-6.

    Article  CAS  Google Scholar 

  25. A.I. Beliaev: Proceedings of an Interinstitute Conference, Consultants Bureau, New York, 1965.

  26. Y. Kawai, K. Mori, M. Kishimoto, K. Ishikura and T. Shimada, Tetsu-to-Hagané, 1974, vol. 60, pp. 29-37.

    Article  CAS  Google Scholar 

  27. K. Nakashima and K. Mori, ISIJ international, 1992, vol. 32, pp. 11-18.

    Article  CAS  Google Scholar 

  28. K. Kawai, K. Mori, M. Kishimoto, K. Ishikura and T. Shimada, Tetsu-to-Hagané, 1974, vol. 60, pp. 38-44.

    Article  CAS  Google Scholar 

  29. M Hansen (1958) Constitution of Binary Alloy. McGraw-Hill, New York, p. 353.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported under Australian Research Council’s Industrial Transformation Research Hub funding scheme (Project IH130200025). Y.T. would like to thank Nippon Steel & Sumitomo Metal Corporation, Japan for the scholarship support provided for his Ph.D. study in the UNSW, Sydney. This research used the facilities supported by AMMRF at the Electron Microscope Unit at the UNSW.

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Pahlevani.

Additional information

Manuscript submitted March 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Pahlevani, F., Privat, K. et al. Engulfment Behavior of Inclusions in High-Carbon Steel: Theoretical and Experimental Investigation. Metall Mater Trans B 49, 2986–2997 (2018). https://doi.org/10.1007/s11663-018-1394-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1394-5

Keywords

Navigation