Skip to main content
Log in

Endurance limit of metals and alloys

  • Mechanical Properties
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

A brief historical review of the development of research of fatigue resistance of metallic materials is presented. Published data and our own results are used to analyze fatigue curves at various endurances and mechanisms of crack nucleation in fatigue tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dengel, “Planung und Auswertung von Dauerschwingversuchen bei angestrebter statistischer Absicherung der Kennwerte,” in: Verhalten von Stahl bei schwingender Beanspruchug, Stahleisen M. B. H., Düsseldorf (1978), pp. 23–46.

    Google Scholar 

  2. V. F. Tetent’ev, Fatigue Resistance of Metals and Alloys [in Russian], Intermet Engineering, Moscow (2002).

    Google Scholar 

  3. S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  4. C. Bathias, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker Verlag (2005).

  5. F. Brainthwaite, “On the fatigue and consequent fracture of metals,” Institution of Civil Engineers, Minutes of Proceedings (1854), pp. 463–474.

  6. C. Hood, in: Institution of Civil Engineers, Minutes of Proceedings, Vol. 2 (1842), p. 180.

    Google Scholar 

  7. H. F. Moore and J. B. Kommers, The Fatigue of Metals, New York (1927).

  8. A. Z. Wöhler, Zeitschrift für Bauwesen, 8, 642 (1858); ibid., 10, 583 (1860); ibid., 13, 233 (1863); ibid., 16, 67 (1866); ibid., 20, 74 (1870).

    Google Scholar 

  9. H. J. Gough, The Fatigue of Metals, London (1926).

  10. M. E. Fine, “Fatigue resistance of metals,” Metall. Trans. A, 11A, March, 365–379 (1980).

  11. V. F. Terent’ev, “To the problem of fatigue limit of metallic materials,” Metalloved. Term. Obrab. Met., No. 6, 22–28 (2004).

  12. V. F. Terent’ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  13. N. A. Makhutov, “Fatigue of metals in a wide range of the number of cycles,” Zavod. Lab. Diagn. Mater., 70(4), 37–41 (2004).

    Google Scholar 

  14. I. Marines, X. Bin, and C. Bathias, “An understanding of very high cycle fatigue of metals,” Int. J. Fatigue, 25, 1101–1107 (2003).

    Article  Google Scholar 

  15. H. F. Moore and J. B. Kommers, “An investigation of the fatigue of metals,” Bull. Eng. Expt. Stat., Univ. Illinois (U.S.A.), No. 124.

  16. V. F. Terent’ev, “Fatigue of high-strength steels. Part 1. Correlation with ultimate strength, form of fatigue curves, and crack nucleation,” Deform. Razrush. Mater., No. 8, 2–11 (2006).

  17. H. Mughrabi, “On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms,” in: Proc. Int. Conf. on “Fatigue in the Very High Cycle Regime”, 2–4 July, 2001, Vienna, Austria, Inst. Meteorol. and Phys. Austria (2001), pp. 35–49.

    Google Scholar 

  18. J. M. Zhang, S. X. Li, Z. O. Yang, et al., “Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime,” Int. J. Fatigue, 29, 765–771 (2007).

    Article  CAS  Google Scholar 

  19. Q. Chen, N. Kawagoishi, Q. Y. Wang, et al., “Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue,” Int. J. Fatigue, 27, 10–12, 1227–1232 (2005).

    Article  Google Scholar 

  20. A. Zh. Afonin, E. A. Kuzmenko, and A. D. Shevchuk, “On the problem of the effect of loading frequency on fatigue strength of metals,” Probl. Prochn., No. 4, 62–67 (1972).

  21. V. F. Terent’ev, “A model of physical fatigue limit of metals and alloys,” Dokl. Akad. Nauk SSSR, 185(2), 324–326 (1969).

    Google Scholar 

  22. V. F. Terent’ev, “Processes of micro-and macroscopic deformation of metallic materials below the fatigue limit,” Metally, No. 5, 73–80 (2003).

  23. L. A. Glikman and V. P. Tekht, “On the problem of the physical nature of the process of fatigue of metal” in: Some Problems of Fatigue Strength of Steel [in Russian], Mashgiz, Moscow-Leningrad (1953), pp. 5–28.

    Google Scholar 

  24. O. N. Romaniv, N. A. Deev, and I. S. Sorokivskii, “‘Fish eye’ morphology and high cycle fatigue fracture of hardened steels,” Fiz. Khim. Mekh. Mater., 9(6), 21–26 (1973).

    Google Scholar 

  25. M. D. Chapetti, T. Tagawa, and T. Miyata, “Ultra-long cycle fatigue of high-strength carbon steels. Part 1. Review and analysis of the mechanism of failure,” Mater. Sci. Eng. A, 356(1–2), 227–235 (2003).

    Google Scholar 

  26. N. I. Vorob’ev, D. A. Mirzaev, O. K. Tokovoi, et al., “Sulfides in forgings from structural steel 40,” Metally, No. 2, 28–35 (2006).

  27. A. B. Kuslitskii, Nonmetallic Inclusions and Fatigue of Steel [in Russian], Tekhnika, Kiev (1976).

    Google Scholar 

  28. I. E. Kolosov and T. A. Lebedev, “Cyclic strength of hardened tool steels,” Metalloved. Term. Obrab. Met., No. 1, 40–49 (1962).

  29. O. N. Romaniv, Ya. N. Gladkikh, and N. A. Deev, “Some special features of the effect of retained austenite on the fatigue and crack resistance of tempered steels,” Fiz. Khim. Mekh. Mater., 11(4), 63–70 (1975).

    CAS  Google Scholar 

  30. Yu. P. Snitko, K. V. Grigorovich, and E. A. Shur, “Effect of nonmetallic inclusions on fatigue properties of rails,” in: Mater. Jubilee Rail Commission 2002, Coll. Rep. [in Russian], Novokuznetsk (2002), pp. 257–264.

  31. Y. Furuja and S. Matsuoka, “Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPa-class low-alloy steels,” Metall. Mater. Trans. A, 33A, Nov., 3421–3431 (2002).

  32. K. Shiozawa, L. Lu, and S. S. Ishihara, “S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high-carbon chromium bearing steel,” Fatigue Fract. Eng. Mater. Struct., 24(12), 781–790 (2001).

    Article  CAS  Google Scholar 

  33. Y. Murakami, Y. Nomoto, and T. Ueda, Fatigue Fract. Mater. Sctruct., 22, 581–590 (1999).

    Article  CAS  Google Scholar 

  34. Y. Murakami, Y. Nomoto, and T. Ueda, et al., Fatigue Fract. Mater. Sctruct., 22, 903–910 (2000).

    Article  Google Scholar 

  35. Y. Furuya and S. Matsuoka, “The effect of modified ausforming on giga-cycle fatigue properties in Si-Mn steels,” J. Iron Steel Inst. Jpn., 89(10), 1082–1089 (2003).

    CAS  Google Scholar 

  36. K. Takai, J. Seki, G. Yamauchi, and Y. Homma, J. Jpn. Inst. Met., 58(12), 1380–1385 (1994).

    CAS  Google Scholar 

  37. K. Takai, Y. Homma, K. Izutsu, et al., J. Jpn. Inst. Met., 60(12), 1155–1162 (1996).

    CAS  Google Scholar 

  38. V. G. Gavrilyuk, V. N. Shivayuk, and V. D. Shanina, “Change in the electron structure caused by C, N, and H atoms in iron and its effect on their interaction with dislocations,” Acta Mater., 53(19), 59–63 (2005).

    Google Scholar 

  39. Y. Murakami, “Effects of small defects and inhomogeneities on fatigue strength: experiments, model and applications to industry,” in: J. Petit (ed.), Proc. ECF11: Mechanisms and Mechanics of Damage and Failure (1996), pp. 31–42.

  40. Y. Murakami and M. Endo, “Effects of hardness and crack geometries on ΔK h of small cracks emanating from small defects,” in: K. J. Miller and E. R. de los Rios (eds.), EFG Publications I, Mech. Eng. Pub., London (1986), pp. 275–293.

    Google Scholar 

  41. Y. M. Murakami and M. Y. Endo, “Effects of defects, inclusions and inhomogeneities on fatigue strength,” Int. J. Fatigue, 16, 163–182 (1994).

    Article  CAS  Google Scholar 

  42. V. T. Troshchenko and L. A. Sosnovskii, Fatigue Resistance of Metals and Alloys, A Reference Book [in Russian], Part 1, Naukova Dumka, Kiev (1987).

    Google Scholar 

  43. W. Hessler, H. Müllner, B. Weiss, et al., “Near-threshold behavior of polycrystalline copper,” Metal Sci., 5, 225–230 (1981).

    Google Scholar 

  44. S. Stanzl-Tschegg, H. Mughrabi, and B. Schoenbauer, “Lifetime and cyclic slip of copper in the VHCF regime,” Int. J. Fatigue, 29(9–11), 2050–2059 (2007).

    Article  MATH  CAS  Google Scholar 

  45. H. Mughrabi, “Specific feature and mechanisms in the ultrahigh cycle regime,” Int. J. Fatigue, 28(11), 1501–1508 (2006).

    Article  MATH  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 47–56, February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terent’ev, V.F. Endurance limit of metals and alloys. Met Sci Heat Treat 50, 88–96 (2008). https://doi.org/10.1007/s11041-008-9018-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-008-9018-3

Keywords

Navigation