Skip to main content
Log in

Distribution of P2O5 and Na2O Between Solid Solution and Liquid Phase in the CaO-SiO2-Fe2O3-P2O5-Na2O Slag System with High P2O5 Content

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The phosphorus content in hot metal will increase in future, because iron ores are steadily deteriorating in quality. Na2O addition to slag is considered an effective method for increasing the efficiency of dephosphorization. In addition, Na2O modification also facilitates phosphorus recovery from dephosphorization slag with high P2O5 content by selective leaching. Therefore, it is necessary to investigate the distribution ratios of P2O5 and Na2O between solid solution and liquid phase in the CaO-SiO2-Fe2O3-P2O5-Na2O slag system. A linear relationship was found between the distribution ratio of P2O5 and the Na2O content in slag, and was independent of P2O5 content. When the Na2O content was high, the Na2O content in the solid solution approached saturation and a new 2CaO·SiO2-2CaO·Na2O·P2O5 solid solution formed. The addition of Na2O decreased the P2O5 content in solid solution, while it increased the mass fraction of solid solution in slag. The distribution ratio of P2O5 increased with increase in the Fe2O3 content and basicity of slag. An increase in P2O5 content in slag results in an increase in the activity coefficient of P2O5 both in the liquid phase and in the solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Kitamura, F. Pahlevani: Tetsu-to-Hagané, 2014, vol. 100, pp. 500-508.

    Article  Google Scholar 

  2. H. Suito, Y. Hayashida and Y. Takahashi: Tetsu-to-Hagané, 1977, vol. 63, pp. 1252–59.

    Article  Google Scholar 

  3. W. Fix, H. Heyman and R. Heinke: J. Am. Ceram. Soc., 1969, vol. 52, pp. 346-347.

    Article  Google Scholar 

  4. S. Kitamura, H. Shibata and N. Maruoka: Steel Res., 2008, vol. 79, pp. 586-590.

    Article  Google Scholar 

  5. M. Muraki, H. Fukushima, N. Sano: Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 1025-1030.

    Article  Google Scholar 

  6. J.J. Park and R. J. Frunhan: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 39-46.

    Google Scholar 

  7. H. Suito and R. Inoue: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 47-53.

    Article  Google Scholar 

  8. K. Kunisada and H. Iwai: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 263-269.

    Article  Google Scholar 

  9. K. Ito, M. Yanagisawa and N. Sano: Tetsu-to-Hagané, 1982, vol. 68, pp. 342-344.

    Article  Google Scholar 

  10. K. Shimauchi, S. Kitamura and H. Shibata: ISIJ Int., 2009, vol. 49, pp. 505-511.

    Article  Google Scholar 

  11. F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: ISIJ Int., 2010, vol. 50, pp. 822-829.

    Article  Google Scholar 

  12. T. Teratoko, N. Maruoka, H. Shibata and S. Kitamura: High Temp. Mater. Process., 2012, vol. 31, pp. 329-338.

    Article  Google Scholar 

  13. C. Du, X. Gao, S. Kim, S. Ueda and S. Kitamura: ISIJ Int., 2016, vol. 56, pp. 1436-1444.

    Article  Google Scholar 

  14. C. Du, X. Gao, S. Ueda and S. Kitamura: ISIJ Int., 2017, vol. 57, pp. 487-496.

    Article  Google Scholar 

  15. C. Du, X. Gao, S. Ueda and S. Kitamura: J. Sustain. Metall., 2017, vol. 3, pp. 671–82.

    Article  Google Scholar 

  16. S. Xie, W. Wang, Y. Liu and H. Matsuura: ISIJ Int., 2014, vol. 54, pp. 766-773.

    Article  Google Scholar 

  17. L. Lin, Y. Bao, W. Jiang and Q. Wu: ISIJ Int., 2015, vol. 55, pp. 552-558.

    Article  Google Scholar 

  18. U. Mizutani: Hume-Rothery Rules for Structurally Complex Alloy Phases, Taylor & Francis, USA, 2010, pp. 87-117.

    Book  Google Scholar 

  19. P. Herasymenko and G. E. Speight: J. Iron Steel Inst., 1950, vol. 166, pp. 169-183.

    Google Scholar 

  20. S. Ban-ya: ISIJ Int., 1993, vol.33, pp. 2-11.

    Article  Google Scholar 

  21. M. Zhong, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 2283-2288.

    Article  Google Scholar 

  22. E.T. Turkdogan: ISIJ Int., 2000, vol.40, pp. 964-970.

    Article  Google Scholar 

  23. Y. Kaida, M. Hasegawa, Y. Kikuchi, K. Wakimoto and M. Iwase: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 43-51.

    Article  Google Scholar 

  24. R. Matsugi, K. Miwa and M. Hasegawa: ISIJ Int., 2017, vol. 57, pp. 1718-1724.

    Article  Google Scholar 

Download references

Acknowledgment

A part of the present study has been supported by the JFE 21st Century Foundation in 2015. The authors would like to express a deep appreciation to the JFE 21st Century Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-ming Du.

Additional information

Manuscript submitted June 2, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Cm., Gao, X., Ueda, S. et al. Distribution of P2O5 and Na2O Between Solid Solution and Liquid Phase in the CaO-SiO2-Fe2O3-P2O5-Na2O Slag System with High P2O5 Content. Metall Mater Trans B 49, 181–189 (2018). https://doi.org/10.1007/s11663-017-1151-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1151-1

Keywords

Navigation