Skip to main content
Log in

The influence of bubble shape and the thickness of the wetting film on the incremental electrical resistance caused by the presence of a single bubble in Hall-Héroult cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Bubbles play an important role in the transport phenomena existing in an electrolysis cell. They increase the total ohmic resistance of the electrolyte but their contribution is still not well quantified. During their movement under the anode, the bubbles are separated from the solid by the so-called wetting film, that is by a thin liquid layer. In order to develop a mathematical model to compute the increment of the electrical resistance of the electrolyte due to the presence of several bubbles under the anode, the effects of the bubble shape and the thickness of the wetting film for a single bubble must be quantified a priori. In this first paper, these effects are computed using the finite element method (FEM). The results have shown that the influence of the bubble shape and that of the wetting film is small, about 5% and 2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

A a :

anode area (m2)

A p :

projected area (m2)

A*:

cross-section of an electrical current tube (m2)

b :

bubble front width (m)

d :

bubble diameter (m)

d eq :

equivalent diameter (m)

\(\vec {E}\) :

electrical field (V/m)

g :

gravitational acceleration (m s−2)

h :

bubble height (m)

i :

local current density (A m−2)

\(\vec {i}\) :

current density vector (A m−2)

I :

current (A)

L C :

length of the elongated bubble (m)

r :

geometrical ratio for large bubbles

R 0 :

electrical resistance of the bubble-free electrolyte (Ω)

R T :

total electrical resistance of the electrolyte with bubbles present (Ω)

u T :

bubble terminal velocity (m s−1)

V :

voltage (V)

V*:

bubble volume (m3)

κ:

electrical conductivity (Ω−1 m−1)

Θ:

covering factor

ρ:

density (kg m3)

σ:

surface tension (N m)

υ:

kinematic viscosity (m2 s−1)

1:

anode

2:

electrolyte

A:

upper limit of the computational domain (within the anode)

B:

cathode surface (bath-molten aluminium interface)

l:

liquid phase

n :

index of an element

n :

normal component

N :

number of element

t :

tangential component

*:

electrical current tube

References

  1. K. Grjotheim and H. Kvande (eds.), ‘Introduction to Aluminium Electrolysis’, 2nd edn. (Aluminium-Verlag, 1993)

  2. L.I. Kiss, S. Poncsák, D. Toulouse, A.L. Perron, A. Liedtke and V. Mackowiak, in L. Nastac and B.Q. Li (eds.), Light Metals Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes (TMS, Warrendale, PA, 2004), pp. 159–167

  3. Haupin W.E. (1971). J. Metals 23:46

    CAS  Google Scholar 

  4. Dernedde E., Cambridge E.L. (1975). In: Rentsch R. (eds) Light Metals. TMS, Warrendale, PA, pp. 111–122

    Google Scholar 

  5. Hyde T.M., Welch B.J. (1997). In: Huglen R. (eds) Light Metals. TMS, Warrendale, PA, pp. 333–340

    Google Scholar 

  6. R.J. Aaberg, V. Ranum, K. Williamson and B.J. Welch, in R. Huglen. (ed.), Light Metals (TMS, Warrendale, PA, 1997), pp. 341–346

  7. Solheim A., Thonstad J. (1986). In: Miller R.B., Peterson W.S. (eds) Light Metals. TMS, Warrendale PA, pp. 397–403

    Google Scholar 

  8. Quian K., Chen D., Chen J.J.J. (1998). J. Appl. Electrochem. 28:1141

    Article  Google Scholar 

  9. Zoric J., Solheim A. (2000). J. Appl. Electrochem. 30:787

    Article  CAS  Google Scholar 

  10. Vogt H., Kleinschrodt H.D. (2003). J. Appl. Electrochem. 33:563

    Article  CAS  Google Scholar 

  11. Perron A.L., Kiss L.I., Poncsák S. (2005). In: Kvande H. (eds) Light Metals. TMS, Warrendale, PA, pp. 565–570

    Google Scholar 

  12. Perron A.L., Kiss L.I., Poncsák S. (2006). Int. J. Multiphase Flow 32:606

    Article  CAS  Google Scholar 

  13. Fortin S., Gerhardt M., Gesing A.J. (1984). In: McGeer J.P. (eds) Light Metals. TMS, Warrendale, PA, pp. 721–741

    Google Scholar 

  14. A.L. Perron, L.I. Kiss, S. Poncsák, Int. J. Multiphase Flow (2006) (in press)

  15. Kiss L.I., Poncsák S. (2002). In: Schneider W. (eds) Light Metals. TMS, Warrendale, PA, pp. 217–223

    Google Scholar 

  16. L.I. Kiss, S. Poncsák and J. Antille. in H. Kvande (Ed.), Light Metal (TMS, Warrendale, PA, 2005), pp. 559–564

  17. Poncsák S., Kiss L.I., Toulouse D., Perron A.L., Perron S. (2006). In: Galloway T.J. (eds) Light Metals. TMS, Warrendale, PA, pp. 457–462

    Google Scholar 

  18. Richards N., Gudbrandsen H., Rolseth S., Thonstad J. (2003). In: Crepeau P.N. (eds) Light Metals. TMS, Warrendale, PA, pp. 315–322

    Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the support of the Fonds québécois de recherches sur la nature et les technologies (FQRNT) and that of the Conseil de Recherches en Sciences Naturelles et en Génie du Canada (CRSNG) in the form of post-graduate scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.I. Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, A., Kiss, L. & Poncsák, S. The influence of bubble shape and the thickness of the wetting film on the incremental electrical resistance caused by the presence of a single bubble in Hall-Héroult cells. J Appl Electrochem 36, 1381–1389 (2006). https://doi.org/10.1007/s10800-006-9220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9220-1

Keywords

Navigation