Skip to main content
Log in

Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R. D. Pehlke: Metall. Mater. Trans. B, 1980, vol. 11, pp. 539-562.

    Article  Google Scholar 

  2. K.D. Peaslee and D.G.C. Robertson: EPD Congr. Proc., TMS, New York, 1994, pp. 1129–45.

  3. T. Fabritius, P. Mure, E. Virtanen, P. Hannula, M. Luomala and J. Härkki: Ironmak. Steelmak., 2002, vol. 29, pp. 29-35.

    Article  Google Scholar 

  4. C. D. Donaldson and R. S. Snedeker: J. Fluid Mech., 1971, vol. 45, pp. 281-319.

    Article  Google Scholar 

  5. D. R. Cuppoletti and E. Gutmark: AIAA J., 1986, vol. 24, pp. 418-423.

    Article  Google Scholar 

  6. K. I. Natio, Y. Ogawa, T. Inomoto, S. Y. Kitamura and M. Yano: ISIJ Int., 2000, vol. 40, pp. 23-30.

    Article  Google Scholar 

  7. Y. Tago and Y. Higuchi: ISIJ Int., 2003, vol. 43, pp. 209-215.

    Article  Google Scholar 

  8. I. Sumi, Y. Kishimoto, Y. Kikuchi and H. Igarashi: ISIJ Int., 2006, vol. 46, pp. 1312-1317.

    Article  Google Scholar 

  9. M. Alam, J. Naser and G. Brooks: Metall. Mater. Trans. B, 2010, vol. 41, pp. 636-645.

    Article  Google Scholar 

  10. M. Alam, J. Naser, G. Brooks and A. Fontana: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1354-1367.

    Article  Google Scholar 

  11. A. Kärnä, M. P. Järvinen and T. Fabritius: Steel. Res. Int., 2015, vol. 86, pp. 1370-1378.

    Article  Google Scholar 

  12. R. Sambasivam and F. Durst: Ironmak. Steelmak., 2010, vol. 37, pp. 195-203.

    Article  Google Scholar 

  13. W. J. Wang, Z. F. Yuan, H. Matsuura, H. X. Zhao, C. Dai and F. Tsukihashi: ISIJ Int., 2010, vol. 50, pp. 491-500.

    Article  Google Scholar 

  14. B. G. S. Lebon, M. K. Patel, G. Djambazov and K. A. Pericleous: Comput. Fluids, 2012, vol. 59, pp. 91-100.

    Article  Google Scholar 

  15. V. Vuorinen, J. Yu, S. Tirunagari, O. Kaario, M. Larmi, C. Duwig and B. J. Boersma: Phys. Fluids, 2013, vol. 25, pp. 016101-22.

    Article  Google Scholar 

  16. M. M. Li, Q. Li, S. B. Kuang and Z. S. Zou: Ironmak. Steelmak., 2014, vol. 41, pp. 699-709.

    Article  Google Scholar 

  17. M. M. Li, Q. Li, S. B. Kuang and Z. S. Zou: Steel Res. Int., 2015, vol. 86, pp. 1517-1529.

    Article  Google Scholar 

  18. F. H. Liu, R. Zhu, K. Dong and S. Y. Hu: Metall. Mater. Trans. B, 2015, vol. 47, pp. 228-243.

    Google Scholar 

  19. M. M. Li, Q. Li, S. B. Kuang and Z. S. Zou: Steel Res. Int., 2016, vol. 87, pp. 288-300.

    Article  Google Scholar 

  20. M. Lv, R. Zhu, H. Wang and R. G. Bai: Steel Res. Int., 2013, vol. 84, pp. 304-312.

    Article  Google Scholar 

  21. Z. F. Yuan, X. Yang, Z. X. Lu, J. N. Huang, Y. F. Pan and E. X. Ma: J. Iron Steel Res. Int., 2007, vol. 14, pp. 1-5.

    Google Scholar 

  22. R. Sambasivam, S. N. Lenka, F. Durst, M. Bock, S. Chandra and S. K. Ajmani: Metall. Mater. Trans. B, 2007, vol. 41, pp. 45-53.

    Article  Google Scholar 

  23. Y. Higuchi and Y. Tago: ISIJ Int., 2003, vol. 43, pp. 1410-1414.

    Article  Google Scholar 

  24. L. C. Zhong, Y. X. Zhu, M. F. Jiang, Z. P. Qu, Y. S. Za and X. Y. Bao: Steel Res. Int., 2005, vol. 76, pp. 611-615.

    Article  Google Scholar 

  25. B.T. Maia, J.A. Alvarenga, R.F. Reis, and R.P. Tavares: The 6th European Oxygen Steelmaking Conference, Stockholm, 2011, pp. 1–12.

  26. F. M. White: Viscous Fluid Flow. McGraw Hill, New York, 1974.

    Google Scholar 

  27. J. O. Hinze: Turbulence. McGraw-Hill Publishing Co., New York, 1975.

    Google Scholar 

  28. FLUENT 14.5 Manual. SAS IP, Inc., Canonsburg, PA, 2012.

  29. D. C. Wilcox: Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998.

    Google Scholar 

  30. F. R. Menter. Int. J. Comput. Fluid D., 2009, vol. 23, pp. 305-316.

    Article  Google Scholar 

  31. P. R. Spalart and M. L. Shur: Aerosp. Sci. Technol., 1997, vol. 1, pp. 297-302.

    Article  Google Scholar 

  32. P. E. Smirnov and F. R. Menter: ASME Paper GT 2008-50480. Berlin, Germany, 2008.

  33. H. K. Versteeg and W. Malalasekera: An Introduction to computational fluid dynamics-The finite volume method. Longman Group Ltd, London, 1995.

    Google Scholar 

  34. S. V. Patankar: Numerical Heat Transfer and Fluid Flow. Taylor & Francis, London, 1980.

    Google Scholar 

  35. Y. A. Cengel and J. M. Cimbala: Fluid Mechanics: Fundamentals and Applications, McGraw Hill, New York, NY, 2006.

    Google Scholar 

  36. Y. Li, W.T. Lou, and M.Y. Zhu: Ironmak. Steelmak., 2013, vol. 40, pp. 505-514.

    Article  Google Scholar 

  37. M. M. Li, Q. Li, S. B. Kuang and Z. S. Zou: Metall. Mater. Trans. B, 2016, vol. 47, pp. 116-126.

    Article  Google Scholar 

  38. S. C. Koria and K. W. Lange: Metall. Mater. Trans. B, 1984, vol. 15, pp. 109-116.

    Article  Google Scholar 

  39. R. B. Banks and D. V. Chandrasekhara: J. Fluid Mech., 1963, vol. 15, pp. 13-34.

    Article  Google Scholar 

  40. F. R. Cheslak, J. A. Nicholls and M. Sichel: J. Fluid Mech., 1969, vol. 36, pp. 55-63.

    Article  Google Scholar 

  41. S. C. Koria: Can. Metall. Q., 1992, vol. 31, pp. 105-112.

    Article  Google Scholar 

  42. H. J. Odenthal, U. Falkenreck and J. Schlüter: ECCOMAS CFD Conference Proceedings, TU Delft, The Netherlands, 2006.

    Google Scholar 

  43. M. Lv, R. Y. Zhu, G. Guo and Y. W. Wang: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1560-1571.

    Article  Google Scholar 

  44. M. M. Li, Q. Li, S. B. Kuang and Z. S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55, pp. 3630-3640.

    Article  Google Scholar 

  45. Y. A. Cengel and J. M. Cimbala: Fluid Mechanics Fundamentals and Applications. McGraw-Hill, New York, 2006.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant 51104037), and the Fundamental Research Funds of the Central Universities of China (Grants N120402010, N140204008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Manuscript submitted May 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, Q., Zou, Z. et al. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance. Metall Mater Trans B 48, 713–725 (2017). https://doi.org/10.1007/s11663-016-0851-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0851-2

Keywords

Navigation