Skip to main content

Advertisement

Log in

Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas–liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

D i :

diffusion coefficient of species i

E :

radiative heat transfer (J/s)

H :

total enthalpy (J/kg)

k :

turbulent kinetic energy (m2/s2)

P :

pressure (N/m2)

Pr t :

turbulent Prandtl number

Sc t :

turbulent Schmidt number

S fu :

volumetric rate of fuel consumption (kg/m3 s)

S p :

spreading rate

T :

temperature (K)

t :

time (s)

U :

velocity (m/s)

u :

fluctuating velocity (m/s)

X :

distance (m)

Y i :

mass fraction of species i

ρ :

density (kg/m3)

μ :

molecular viscosity (Ns/m2)

μ t :

turbulent viscosity (Ns/m2)

γ :

thermal conductivity (W/mK)

ε:

turbulent dissipation rate (m2/s3)

:

emissivity

ζ:

vorticity (1/s)

D e :

nozzle exit diameter (m)

References

  1. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall, Upper Saddle River, NJ, 1993.

    Google Scholar 

  2. K.D. Peaslee and D.G.C. Robertson: EPD Congress Proc., TMS, New York, NY, 1994, pp. 1129-45.

    Google Scholar 

  3. K.D. Peaslee and D.G.C. Robertson: Steelmaking Conf. Proc., TMS, New York, NY, 1994, pp. 713-22.

    Google Scholar 

  4. B. Sarma, P.C. Mathur, R.J. Selines, and J.E. Anderson: Electric Furnace Conf. Proc., 1998, vol. 56, pp. 657-72.

    Google Scholar 

  5. J.E. Anderson, N.Y. Somers, D.R. Farrenkopf, and C. Bethal: US Patent 5 823 762, 1998.

  6. P.C. Mathur: Coherent Jets in Steelmaking: Principles and Learnings, Praxair Metals Technologies, Indianapolis, IN, 2004.

    Google Scholar 

  7. C. Harris, G. Holmes, M.B. Ferri, F. Memoli, and E. Malfa: AISTech—Iron and Steel Technology Conf. Proc., 2006, pp. 483–90.

  8. R. Schwing, M. Hamy, P. Mathur, and R. Bury: “Maximizing EAF Productivity and Lowering Operating Costs with Praxiar’s Co-Jet Technology – Results at BSW,” 1999 Metec Conference, Dusseldorf, Germany.

  9. W.J. Mahoney: AISTech-Iron and Steel Technology Conf. Proc., Pittsburgh, PA, 2010, pp. 1071–80.

  10. A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, and R.I.L. Guthrie: ISIJ Int., 2004, vol. 44, pp. 1639–45.

    Article  CAS  Google Scholar 

  11. C. Candusso, M. Iacuzzi, S. Marcuzzi, and D. Tolazzi: AISTech—Iron and Steel Technology Conf. Proc., 2006, pp. 549–57.

  12. M.-S. Jeong, V.R.S. Kumar, H.-D. Kim, T. Setoguchi, and S. Matsuo: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Fort Lauderdale, FL, 2004.

    Google Scholar 

  13. W. Malalasekera and H.K. Versteeg: An Introduction to Computational Fluid Dynamics, Pearson, Harlow, England, 2007.

  14. D.C. Wilcox: Turbulence Modelling for CFD, DCW Industries, La Canada, CA, 1998.

    Google Scholar 

  15. M. Alam, J. Naser, and G.A. Brooks: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 636-45.

    Article  CAS  ADS  Google Scholar 

  16. B.E. Launder and D.B. Spalding: Comput. Meth. Appl. Mech. Eng., 1974, vol. 3, pp. 269-89.

    Article  MATH  Google Scholar 

  17. B.F. Magnussen and B.H. Hjertager: Sixteenth Symp. (Int.) on Combustion, Cambridge, MA, 1976, pp. 719–29.

  18. M.F. Modest: Radiative Heat Transfer, McGraw-Hill, New York, NY, 1993.

    Google Scholar 

  19. Y.A. Cengel and J.M. Cimbala: Fluid Mechanics Fundamentals and Applications, McGraw Hill, New York, NY, 2006.

    Google Scholar 

  20. Anonymus: AVL Fire CFD Solver v2008.2 Manual, AVL Fire, Graz, Austria, 2006.

  21. P.H. Gaskell and A.K.C. Lau: Int. J. Numer. Meth. Fluid, 1988, vol. 8, pp. 617-41.

    Article  MathSciNet  MATH  Google Scholar 

  22. S.V. Patankar and D.B. Spalding: Int. J. Heat. Mass. Trans., 1972, vol. 15, pp. 1787-806.

    Article  MATH  Google Scholar 

  23. Y. Bartosiewicz, Y. Mercadier, and P. Proulx: AIAA, 2002, vol. 40, pp. 2257-65.

    Article  Google Scholar 

  24. D. Papamoschou and A. Roshko: J. Fluid Mech., 1988, vol. 197, pp. 453-77.

    Article  ADS  Google Scholar 

  25. W.P. Jones and J.H. Whitelaw: Combust. Flame, 1982, vol. 48, pp. 1-26.

    Article  CAS  Google Scholar 

  26. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, MA, 2000.

    MATH  Google Scholar 

  27. I. Sumi, Y. Kishimoto, Y. Kikichi, and H. Igarashi: ISIJ Int., 2006, vol. 46, pp. 1312-7.

    Article  CAS  Google Scholar 

  28. G. Cox and C.R: Fire Mater., 1982, vol. 6, pp. 127–34.

  29. D.A. Smith and G. Cox: Combust. Flame, 1992, vol. 91, pp. 226-38.

    Article  CAS  Google Scholar 

  30. Y.E. Lee and L. Kolbeinsen: ISIJ Int., 2007, vol. 47, pp. 764-65.

    Article  CAS  Google Scholar 

  31. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: ISIJ Int., 2003, vol. 43, pp. 983–89.

Download references

Acknowledgment

The authors would like to thank the members of the One Steel, Melbourne for their financial support and useful discussions in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morshed Alam.

Additional information

Manuscript submitted April 28, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M., Naser, J., Brooks, G. et al. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process. Metall Mater Trans B 41, 1354–1367 (2010). https://doi.org/10.1007/s11663-010-9436-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9436-7

Keywords

Navigation