Skip to main content
Log in

CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8–x) mol pct yttria-costabilized zirconia (xCe(8–x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8–x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Lu: Science, 2010, vol. 328, pp. 319–20.

    Article  Google Scholar 

  2. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  Google Scholar 

  3. T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.

    Article  Google Scholar 

  4. A.M. Abdelkader, K. Tripuraneni Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863–86.

    Article  Google Scholar 

  5. W. Xiao and D.H. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215–28.

    Article  Google Scholar 

  6. X. Guan, U.B. Pal, Y. Jiang, and S. Su: J. Sustain. Metall., 2016, vol. 2, pp. 152–66.

    Article  Google Scholar 

  7. U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53, pp. 32–35.

    Article  Google Scholar 

  8. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 503–12.

    Article  Google Scholar 

  9. X. Zou, S. Gu, X. Lu, X. Xie, C. Lu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 1262–74.

    Article  Google Scholar 

  10. X. Zou, S. Gu, H. Cheng, X. Lu, Z. Zhou, C. Li, and W. Ding: J. Electrochem. Soc., 2015, vol. 162, pp. D49–55.

    Article  Google Scholar 

  11. B. Mishra and D.L. Olson: J. Phys. Chem. Solids, 2005, vol. 66, pp. 396–401.

    Article  Google Scholar 

  12. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 43, pp. 733–36.

    Article  Google Scholar 

  13. W. Li, X. Jin, F. Huang, and G.Z. Chen: Angew. Chem. Int. Ed., 2010, vol. 49, pp. 3203–06.

    Article  Google Scholar 

  14. Q. Xu, L. Deng, Y. Wu, and T. Ma: J. Alloys. Compd., 2005, vol. 396, pp. 288–94.

    Article  Google Scholar 

  15. Q. Song, Q. Xu, X. Kang, J. Du, and Z. Xi: J. Alloys. Compd., 2010, vol. 490, pp. 241–46.

    Article  Google Scholar 

  16. B.K. Jackson, D. Inman, M. Jackson, D. Dye, and R.J. Dashwood: J. Electrochem. Soc., 2010, vol. 157, pp. E36–43.

    Article  Google Scholar 

  17. K. Mohandas and D. Fray: Metall. Mater. Trans B., 2009, vol. 40B, pp. 685–99.

    Article  Google Scholar 

  18. D. Hu, W. Xiao, and G.Z. Chen: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 272–82.

    Article  Google Scholar 

  19. G.Z. Chen, E. Gordo, and D.J. Fray: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 223–33.

    Article  Google Scholar 

  20. D.S.M. Vishnu, J. Sure, and K.S. Mohandas: Carbon, 2015, vol. 93, pp. 782–92.

    Article  Google Scholar 

  21. S. Jiao and D.J. Fray: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 74–79.

    Article  Google Scholar 

  22. L. Hu, Y. Song, J. Ge, S. Jiao, and J. Cheng: J. Electrochem. Soc., 2016, vol. 163, pp. E33–38.

    Article  Google Scholar 

  23. X. Guan, S. Su, U.B. Pal, and A.C. Powell: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2138–44.

    Article  Google Scholar 

  24. E. Gratz, X. Guan, J. Milshtein, U.B. Pal, and A.C. Powell: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1325–36.

    Article  Google Scholar 

  25. X. Guan and U.B. Pal: Prog. Nat. Sci.: Mater. Int., 2015, vol. 25, pp. 591–94.

    Article  Google Scholar 

  26. U.B. Pal and A.C. Powell IV: JOM, 2007, vol. 59, pp. 44–49.

    Article  Google Scholar 

  27. A. Krishnan, X.G. Lu, and U.B. Pal: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 463–73.

    Article  Google Scholar 

  28. C. Chen, X. Yang, J. Li, X. Lu, and S. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1727–35.

    Article  Google Scholar 

  29. X. Zou, C. Chen, X. Lu, S. Li, Q. Xu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2016, doi: 10.1007/s11663-016-0817-4.

    Google Scholar 

  30. X. Zou, K. Zheng, X. Lu, Q. Xu, and Z. Zhou: Faraday Discuss., 2016, vol. 190, pp. 53–69.

    Article  Google Scholar 

  31. X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding: J. Mater. Chem. A, 2014, vol. 2, pp. 7421–30.

    Article  Google Scholar 

  32. X. Zou, X. Lu, Z. Zhou, and C. Li: Electrochem. Commun., 2012, vol. 21, pp. 9–13.

    Article  Google Scholar 

  33. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding: Electrochim. Acta, 2011, vol. 56, pp. 8430–37.

    Article  Google Scholar 

  34. X. Zou, X. Lu, C. Li, and Z. Zhou: Electrochim. Acta, 2010, vol. 55, pp. 5173–79.

    Article  Google Scholar 

  35. A. Martin, J.C. Poignet, J. Fouletier, M. Allibert, D. Lambertin, and G. Bourgès: J. Appl. Electrochem., 2010, vol. 40, pp. 533–42.

    Article  Google Scholar 

  36. J. Xu, B. Lo, Y. Jiang, U.B. Pal, and S. Basu: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 3887–96.

    Article  Google Scholar 

  37. E.S. Gratz, J.D. Milshtein, and U.B. Pal: J. Am. Ceram. Soc., 2013, vol. 96, pp. 3279–85.

    Google Scholar 

  38. A. Mukherjee, N. Campagnol, J.V. Dyck, J. Fransaer, and B. Blanpain: J. Am. Ceram. Soc., 2015, vol. 98, pp. 972–81.

    Article  Google Scholar 

  39. J. Milshtein, E. Gratz, S. Pati, A.C. Powell, and U.B. Pal: J. Min. Metall. Sect. B-Metall., 2013, vol. 49, pp. 183–90.

    Article  Google Scholar 

  40. M. Minakshi, D.R.G. Mitchell, M.L. Carter, D. Appadoo, and K. Nallathamby: Electrochim. Acta, 2009, vol. 54, pp. 3244–49.

    Article  Google Scholar 

  41. M. Minakshi, K. Nallathamby, and D.R.G. Mitchell: J. Alloys Compd., 2009, vol. 479, pp. 87–90.

    Article  Google Scholar 

  42. B. Shen, X. Zou, H. Cheng, G. Lai, and X. Lu: J. Chin. Ceram. Soc. (Chin.), 2015, vol. 43, pp. 781–87.

    Google Scholar 

  43. V. Menvie Bekale, C. Legros, C. Haut, G. Sattonnay, and A.M. Huntz: Solid State Ion., 2006, vol. 177, pp. 3339–47.

    Article  Google Scholar 

  44. N. Sakai, Y.P. Xiong, K. Yamaji, H. Kishimoto, T. Horita, M.E. Brito, and H. Yokokawa: J. Alloys Compd., 2006, vol. 408–412, pp. 503–06.

    Article  Google Scholar 

  45. A.H. Heuer: J. Am. Ceram. Soc., 1987, vol. 70, pp. 689–698.

    Article  Google Scholar 

  46. K. Rajeswari, M. Buchi Suresh, U.S. Hareesh, Y. Srinivasa Rao, D. Das, and R. Johnson: Ceram. Int., 2011, vol. 37, pp. 3557–64.

    Article  Google Scholar 

  47. C.H. Lee and G.M. Choi: Solid State Ionics, 2000, vol. 135, pp. 653–661.

    Article  Google Scholar 

  48. C.C. Appel, N. Bonanos, A, Horsewell, and S. Linderoth: J. Mater. Sci., 2001, vol. 36, pp. 4493–4501.

    Article  Google Scholar 

  49. A.H. Chokshi: Scrip. Mater., 2003, vol. 48, pp. 791–96.

    Article  Google Scholar 

  50. C.L. Yeh, H.J. Wang, and W.H. Chen: J. Alloys Compd., 2008, vol. 450, pp. 200–07.

    Article  Google Scholar 

  51. R.Mitra: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1629–41.

    Article  Google Scholar 

  52. X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, and D.J. Fray: Energy Environ. Sci., 2014, vol. 7, pp. 3223–63.

    Article  Google Scholar 

  53. M. Estruga, S.N. Girard, Q. Ding, L. Chen, X. Li, and S. Jin: Chem. Commun., 2014, vol. 50, pp. 1454–57.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 51304132, 51225401, and 51574164), the National Basic Research Program of China (No. 2014CB643403), the Science and Technology Commissions of Shanghai Municipality (No. 14JC1491400), and the Young Teacher Training Program of Shanghai Municipal Education Commission for financial support. We also thank the Instrumental Analysis and Research Center of Shanghai University for materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingli Zou or Xionggang Lu.

Additional information

Manuscript submitted May 6, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Li, X., Shen, B. et al. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process. Metall Mater Trans B 48, 678–691 (2017). https://doi.org/10.1007/s11663-016-0834-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0834-3

Keywords

Navigation