Skip to main content
Log in

Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term “probability,” based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.K. Biswas: Principles of Blast Furnace Ironmaking, 2nd ed., Cootha Publication House, Brisbane, Australia, 1981, p. 329.

    Google Scholar 

  2. C. Wu, Y.Q. Sum, D.X. Luo, and Y.X. Lu: Journal of Wuhan University of Science and Technology, 2013, vol.36, pp. 254-57.

    Google Scholar 

  3. J.W. Matousek: The Minerals, Metals & Materials Society, 2015, vol.67, pp. 1216-22.

    Article  Google Scholar 

  4. L. Zhou, X.H. Wang, and J. Wang: J. Iron Steel Res., 2014. vol.21, pp. 70-3.

    Article  Google Scholar 

  5. K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-68.

    Article  Google Scholar 

  6. M. Chen, D. Zhang, M. Kou, and B. Zhao: ISIJ Int., 2014, vol. 54, pp. 2025-30.

    Article  Google Scholar 

  7. L. Forsbacka, L. Holappa, T. Iida, Y. Kita, and Y. Toda: Scand. J. Metall, 2003, vol. 32, pp. 273-80.

    Article  Google Scholar 

  8. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang: International Journal of Minerals, Metallurgy, and Materials, 2014, vol. 21, pp. 353-62.

    Article  Google Scholar 

  9. I. Gultyai: Izv. Akad. Nauk SSSR, 1962, vol. 5, pp. 52-65.

    Google Scholar 

  10. V.K. Gupta and V. Seshadri: Trans. Indian Inst. Met., 1973, vol. 26, pp. 55-64.

    Google Scholar 

  11. J.W. Han, E.H. Kwon, S.S. Han, J.H. Chi, B.S. Kim, and J.C. Lee: Mater. Sci. Forum, 2003, vol. 439, pp. 149-55.

    Article  Google Scholar 

  12. E.E. Hofmann: Berg- und hüttenmännische monatshefte, 1959, vol. 106, pp. 397-407.

    Google Scholar 

  13. E.E. Hofmann: Stahl und Eisen, 1959, vol. 79, pp. 846-53.

    Google Scholar 

  14. F. Johannsen and H. Brunion: Zeitschrift fur Erzbergbau und Metallhutten-Wesen, 1959, vol. 12, pp. 272-79.

    Google Scholar 

  15. Y. Kawai: The science reports of the Research Institutes, Tohoku University, Physics, 1952, vol. A, pp. 615–21.

  16. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2012, vol. 44, pp. 5-12.

    Google Scholar 

  17. J.R. Kim, Y.S. Lee, and D.J. Min: ISSTech. Conference, 2003, Indianapolis, USA, p. 515.

  18. S.H. Kim and J.D. Seo: Iron & Steelmaker, 1999, vol. 26, pp. 51-7.

    Google Scholar 

  19. T. Koshida, T. Ogasawara, and H. Kishidaka: Tetsu to Hagane, 1981, vol. 67, pp. 1491-97.

    Google Scholar 

  20. P.C.Li and X.J. Ning: Metall. Mater. Trans. B., 2016, vol. 47, pp. 446-57

    Google Scholar 

  21. Y.S. Lee, J.H. Park, D.J. Min, S.H. Yi, and W.W. Huh: Ironmaking Conf. Proc., 2002, vol. 61, pp. 155-65.

    Google Scholar 

  22. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi: ISIJ Int., 2004, vol. 44, 1283-89.

    Article  Google Scholar 

  23. U. Mishra, B. Thakur, and M. Thakur: SEAISI Quarterly, 1994, vol. 23, pp. 72-82.

    Google Scholar 

  24. A.M. Muratov and I.S. Kulikov: Izvestiya Akademii Nauk SSSR. Metally., 1965, vol.1, pp. 57-62.

    Google Scholar 

  25. M. Nakamoto, T. Tanaka, J. Lee, and T. Usui: ISIJ Int., 2004, vol. 44, pp. 2115-19.

    Article  Google Scholar 

  26. H. Park, J.Y. Park, G.H. Kim, and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-56.

    Article  Google Scholar 

  27. N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-11.

    Article  Google Scholar 

  28. C. Scarfe, D. Cronin, J. Wenzel, and D. Kauffman: Am. Mineral., 1983, vol. 68, pp. 1083-88.

    Google Scholar 

  29. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 911-15.

    Article  Google Scholar 

  30. M. Song, Q. Shu, and D. Sichen: Steel Res. Int., 2011, vol. 82, pp. 260-68.

    Article  Google Scholar 

  31. X.L. Tang, Z.T. Zhang, M. Guo, M. Zhang, and X.D. Wang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 1-17.

    Article  Google Scholar 

  32. G.P. Vyatkin, N.L. Zhilo, and M.Y. Ostroukhov: Izvestiya Vysshikh Uchebnykh Zavedenii. Chernaya Metallurgia., 1962, vol. 5, pp. 25-9.

    Google Scholar 

  33. L.Yao, S.Ren, X.Q.Wang, Q.C.Liu, L.Y.Dong, J.F.Yang, and J.B.Liu: Steel Res.Int., 2016. Vol. 87, pp. 241-49.

    Article  Google Scholar 

  34. Y. Kita, A. Handa, and T. Iida: Journal of High Temperature Society of Japan, 2001, vol. 27, pp. 144-50.

    Google Scholar 

  35. J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1945, vol. 28, pp. 310-16.

    Article  Google Scholar 

  36. J.S. Machin and T.B. Yee: J. Am. Ceram. Soc., 1954, vol. 37, pp. 177-86.

    Article  Google Scholar 

  37. J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35, pp. 322-25.

    Article  Google Scholar 

  38. L.N. Sheludyakov, E.T. Sarancha, and A.A. Vakhitov: Trans. Inst. Khim. Nauk, Akad. Nauk Kaz. SSR, 1967, vol. 15, pp. 158–63.

  39. A.I. Tsybulnikov, G.A. Toporishchev, G.A. Vachugov, E.D. Mokhir, and V.V. Vetysheva: Izvestiya Vysshikh Uchebnykh Zavedenii. Chernaya Metallurgia, 1973, vol. 2, pp. 5–9.

    Google Scholar 

  40. A.M. Yakushev, V.M. Romashin, and V.A Amfiteatrov: Izvestiya Vysshikh Uchebnykh Zavedenii. Chernaya Metallurgia, 1977, vol. 55–58.

  41. M. Kato and S. Minowa: Trans. Iron Steel Inst. Jpn., 1969, vol. 9, pp. 31-38.

    Google Scholar 

  42. H. Taniguchi: Contrib. Mineral. Petrol., 1992, vol. 109, pp. 295-303.

    Article  Google Scholar 

  43. VDEh: Slag Atlas, 2nd edn, Verlag Stahleisen, Dusseldorf, 1995, p. 351.

  44. G. Leblanc, R. Secco, and M. Kostic: The Measurement, Instrumentation and Sensors Handbook, 1999, Springer, Berlin

    Google Scholar 

  45. E.F. Riebling: Rev. Sci. Instrum., 1963, vol. 34, pp. 568-72.

    Article  Google Scholar 

  46. J.O.M. Bockris, J.D. Mackenzie, and J.A. Kitchener: Trans. Faraday Soc., 1955, vol. 51, pp. 1734-48.

    Article  Google Scholar 

  47. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  48. M.Chen, D.W. Zhang, and B. Zhao: Proceeding of 4th Australia-China-Japan Joint Symposium on Iron and Steel-making, 2012, Shenyang, China. pp. 115–27.

    Google Scholar 

  49. S. Sathivel, J. Huang, and W. Prinyawiwatkul: J. Food Eng., 2008, vol. 84, pp. 187-93.

    Article  Google Scholar 

  50. I. Sohn and D.J. Min: Steel Res.Int., 2012, vol. 83, pp. 611-30.

    Article  Google Scholar 

  51. G. Urbain: Steel Res.Int., 1987, vol. 58, pp. 111-6.

    Google Scholar 

  52. P. Riboud, Y. Roux, L. Lucas, and H. Gaye: Fachberichte Huttenpraxis Metallweiterverarbeitung, 1981, vol. 19, pp. 859-69.

    Google Scholar 

  53. T. Iida, H. Sakai, Y. Kita, and K. Shigeno: ISIJ Int., 2000, vol. 40, pp. S110-14.

    Article  Google Scholar 

  54. K.C. Mills and S. Sridhar: National Physical Lab, 1992.

  55. A. Shankar: Ph.D. Thesis, Royal Institute of Technology, Stockholm, 2007.

  56. H.S. Ray and S. Pal: Ironmaking Steelmaking., 2004, vol. 31, pp. 125-30.

    Article  Google Scholar 

  57. X.J. Hu, Z.S. Ren, G.H. Zhang, L.J. Wang, and K.C. Chou: International Journal of Minerals, Metallurgy, and Materials, 2012, vol. 19, pp. 1088-92.

    Article  Google Scholar 

  58. L. Gan and C. Lai: Metall. Mater. Trans. B, 2013, vol. 45, pp. 875-88.

    Google Scholar 

  59. X.L. Tang, M. Guo, X.D. Wang, Z.T. Zhang, and M. Zhang: Beijing Keji Daxue Xuebao, 2010, vol. 32, pp. 1542-46.

    Google Scholar 

  60. M. Suzuki and E. Jak: Metall. Meter. Trans. B, 2013, vol. 44, pp. 1451-65.

    Article  Google Scholar 

  61. A.N. Grundy, H. Liu, I.H. Jung, S.A. Decterov, and A.D. Pelton: Int. J. Mater. Res., 2008, vol. 99, pp. 1185-94.

    Article  Google Scholar 

  62. A.N. Grundy, I.H. Jung, A.D. Pelton, and S.A. Decterov: Int. J. Mater. Res., 2008, vol. 99, pp. 1195-209.

    Article  Google Scholar 

  63. Q. Shu: Ironmaking and Steelmaking., 2015, vol. 42, pp. 641-47.

    Article  Google Scholar 

  64. G.H. Zhang, K.Mills and C. Chou: Steel Res.Int., 2013, vol. 84, pp. 631-7.

    Article  Google Scholar 

  65. J.Frenkel: Acta phys.-chim. URSS., 1935, vol. 3, pp.913-38.

  66. J.A.Duffy and M.D.Ingram: J.Inorg.Nucl.Chem., 1975, vol. 37, pp. 1203-6.

    Article  Google Scholar 

  67. H. Vogel: Phys. Z., 1921, vol. 22, pp. 645-46.

    Google Scholar 

  68. G.S.Fucher: J.Am.Ceram.Soc., 1925, vol. 8, pp. 339-55.

    Article  Google Scholar 

  69. G.Tammann and W. Hesse: Z. Anorg. Allg. Chem., 1926, vol. 156, pp. 245-57.

    Article  Google Scholar 

  70. J.N. Tiwary, S. Sarkar, B. Mishra, and U.K. Mohanty: Emerging Mater. Res., 2013, vol. 2, pp. 152-162.

    Article  Google Scholar 

  71. H. Ramberg: The Journal of Geology, 1952, vol. 1, pp. 331-55.

    Article  Google Scholar 

  72. T. Licko and V. Danek: Physics and chemistry of glasses, 1986, vol. 27, pp. 22-26.

    Google Scholar 

  73. S.G.Bratsch: J.Chem.Educ., 1988, vol. 65, pp. 223-35.

    Article  Google Scholar 

  74. P.M.Bills: J.Iron Steel Inst., 1963, vol. 201, pp. 133-40.

    Google Scholar 

  75. G. Urbain, Y. Bottinga, and P. Richet: Geochimica et Cosmochimica Acta., 1982, vol. 46, pp. 1061-72.

    Article  Google Scholar 

  76. R.A. Lyutikov and L.M. Tsylev: Izv. Vkad. Nauk. SSSR Otd. TSch. Nauk. Metall. Gorn. Delo, 1963, vol. 1, p. 41.

  77. T. Yasukouchi, K. Nakashima and K. Mori: Tetsu-to-Hagane, 1999, vol. 85, pp. 571-7.

    Google Scholar 

  78. S. Tunezo and Y. Kawai: The Research Insitute of Mineral Dressing and Metallurgy, 1951, pp. 492–501.

  79. G.H. Zhang and K.C. Chou: ISIJ Int., 2013, vol. 53, pp. 177-80.

    Article  Google Scholar 

  80. M.J.Toplis and D.B.Dingwell: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5169-88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Shougang Group, China and Rio Tinto Iron Ore, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojun Zhao.

Additional information

Manuscript submitted March 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Chen, M., Zhang, W. et al. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System. Metall Mater Trans B 47, 2861–2874 (2016). https://doi.org/10.1007/s11663-016-0744-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0744-4

Keywords

Navigation