Skip to main content
Log in

Effect of TiO2 on the Crushing Strength and Smelting Mechanism of High-Chromium Vanadium-Titanium Magnetite Pellets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of TiO2 on the crushing strength for high-Cr V-Ti magnetite pellets was studied in this paper. On one hand, the crushing strength obviously decreased with the increasing TiO2 contents. On the other hand, the crushing strength had an obvious increase after grinding treatment for the high-Cr V-Ti magnetite and titanium concentrate. It is found that the crushing strength has great relations with the mineral phase and microstructure. The effect of TiO2 on the smelting mechanism for high-Cr V-Ti magnetite pellets was also studied in this paper. With the increasing TiO2 contents in the range of 2.47 to 12.14 pct, the softening start temperature and softening temperature gradually increased, and the softening zone gradually narrowed down; the melting start temperature and the dripping temperature increased, and the melting–dripping temperature zone also increased. The permeability index increased with the increasing TiO2 contents as a whole. In the process of slag–iron’s dripping and separating, it is proposed that amounts of Cr and V moving to the melted iron are obviously more than those moving to the slag, while amount of Ti moving to slag is much greater than that moving to the melted iron. It is demonstrated that Ti(C,N) generates increasingly with the increasing TiO2 contents and accumulates as especial regular rigid granules on the surface of coke. The size of melted iron decreased with the increasing TiO2 contents, and this is in accordance with the present investigations that the dripping difficulty increased with the increasing TiO2 contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H.G. Du: Principle of smelting vanadium-titanium magnetite in the blast furnace, 1st ed., p. 1, Science Press, Beijing, China, 1996.

    Google Scholar 

  2. G.-J. Cheng, J.-X. Liu, Z.-G. Liu, M.-S. Chu, X.-X. Xue: Ironmaking and Steelmaking, 2015, vol. 42(1), pp. 17-26.

    Article  Google Scholar 

  3. J.X. Liu, G.J. Cheng, Z.G. Liu, M.S. Chu, X.X. Xue: Steel Res. Int., 2015, vol. 86(7), pp. 808-816.

    Article  Google Scholar 

  4. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, C.G. Bai: ISIJ Int., 2015, vol. 55(7), pp. 1367-1376.

    Article  Google Scholar 

  5. S.K. Gupta, V. Rajakumar, and P. Grieveson: Metall. Trans. B, 1989, vol 20B, pp. 735-745.

    Article  Google Scholar 

  6. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu: Metall. Mater. Trans. B, 2013, vol 44B, pp. 252-260.

    Article  Google Scholar 

  7. G.D. McAdam: Ironmaking and Steelmaking, 1974, vol 1(3), pp. 138-150.

    Google Scholar 

  8. J.B. Zhang, Q.S. Zhu, Z.H. Xie, L. Chao, and H.Z. Li: Metall. Mater. Trans. B. 2013, vol 44B, pp. 897-905.

    Article  Google Scholar 

  9. K. Sun, R. Takahashi, J. Yagi: ISIJ Int., 1992, vol 32(4), pp. 496-504.

    Article  Google Scholar 

  10. L. H. Zhou, and F. H. Zeng: Ironmaking and Steelmaking, 2011, vol 38(1), pp. 59-64.

    Article  Google Scholar 

  11. R. Huang, X.W. Lv, C.G. Bai, K. Zhang, and G.B. Qiu: Steel Research Int., 2013, vol 84(9), pp. 892-899.

    Article  Google Scholar 

  12. S.Z. El-Tawil, I.M. Morsi, A. Yehia, and A.A. Francis: Can. Metall. Quart., 1996, vol 35(1), pp. 31-37.

    Article  Google Scholar 

  13. E. Park, and O. Ostrovski: ISIJ Int., 2004, vol 44(6), pp. 999-1005.

    Article  Google Scholar 

  14. J. Dang, X.J. Hu, G.H. Zhang, X.M. Hou, X.B. Yang, and K.C. Chou: High Temperature Materials and Processes, 2013, vol 32(3), pp. 229-236.

    Article  Google Scholar 

  15. K. Sun, T. Akiyama, R. Takahashi, and J. Yagi: ISIJ Int., 1995, vol 35(4), pp. 360-366.

    Article  Google Scholar 

  16. J.-Y. Hwang: Characterization of Minerals, Metals, and Materials 2013, Minerals, Metals and Materials Society, Warrendale, 2013, pp. 363–69.

  17. L.B. Xu: Master’s Thesis, Northeastern University, 2012.

  18. H.Z. Ou: Master’s Thesis, Northeastern University, 2012.

  19. T. Paananen, K. Kinnunen: Steel Research Int., 2009, vol 80(6), pp. 408-414.

    Google Scholar 

  20. M.S. Chu: Raw fuels and auxiliary materials in Ferrous Metallurgy, 1st ed., p. 158, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  21. Y.M. Chen, and R. Chen: Microstructure of sinter and pellet, 1st ed., p. 111, Central South University Press, Changsha, China, 2011.

    Google Scholar 

  22. D.Q. Zhu, D. Chen, J. Pan: J Central South Univ. (Sci. Technol.), 2011, vol 42(7), pp. 1825–32.

  23. X.L. Chen, S. Liu, M. Gan, and X.H. Fan: Chin. J. Eng., in press.

  24. S. Hayashi, and Y. Iguchi: Ironmaking and Steelmaking, 2005, vol 32(4), pp. 353-358.

    Article  Google Scholar 

  25. H.T. Wang, and H.Y. Sohn: Ironmaking and Steelmaking, 2011, vol 38(6), pp. 447-452.

    Article  Google Scholar 

  26. G.H. Li, Z.K. Tang, Y.B. Zhang, Z.X. Cui, and T. Jiang: Ironmaking and Steelmaking, 2010, vol 37(6), pp. 393-397.

    Article  Google Scholar 

  27. G.Q. Yang, J.L. Zhang, J.G. Shao, Y.C. Wen, J.T. Rao, and W.G. Fu: Iron Steel Vanadium Titanium, 2012, vol 33(5), pp. 30-34.

    Google Scholar 

  28. M.H. KHEDR: ISIJ Int., 2000, vol 40(4), pp. 309-314.

    Article  Google Scholar 

  29. W.Z. Luo, Y.W. Mao, L. H, and Y.K. Zhu: Iron and Steel, 1987, vol 22(1), pp. 1–4.

  30. G.Y. Wen, Y.Z. Yan, S.J. Zhao, J.J. Huang, G.H. Jiang, and X.M. Yang: Iron and Steel, 1996, vol 31(2), pp. 6-11.

    Google Scholar 

  31. W.Z. Wang, and Y.X. Shi: Iron Steel Vanadium Titanium, 1989, vol 10(2), pp. 13-15.

    Google Scholar 

  32. N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Trans. B, 2003, vol 34B, pp. 509-516.

    Article  Google Scholar 

  33. G.Y. Wen, Y.Z. Yan, P.T. Zhou, Y.C. Zhou, D.H. Liao, and G. Wang: Iron Steel Vanadium Titanium, 1996, vol 17(3), pp. 24-29.

    Google Scholar 

  34. H.G. Du, and Z.P. Zhang: Iron Steel Vanadium Titanium, 1994, vol 15(4), pp. 1–3, 27.

  35. P. Liu, and W.Z. Ding: Ferro-Alloys, 2004, vol 2, pp. 8-11.

    Google Scholar 

Download references

Acknowledgments

The authors are especially thankful to the Major Program of National Natural Science Foundation of China (Grant No. 51090384), 863 Program (Grant No. 2012AA062302 and No. 2012AA062304) and Fundamental Research Funds for the Central Universities (Grant No. N110202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxin Xue.

Additional information

Manuscript submitted August 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Xue, X., Jiang, T. et al. Effect of TiO2 on the Crushing Strength and Smelting Mechanism of High-Chromium Vanadium-Titanium Magnetite Pellets. Metall Mater Trans B 47, 1713–1726 (2016). https://doi.org/10.1007/s11663-016-0628-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0628-7

Keywords

Navigation