Skip to main content

Advertisement

Log in

Experimental and Simulation Study for Heat Transfer Coefficient in Hot Stamping of High-Strength Boron Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An optimization-based numerical procedure was developed to determine the pressure-dependent heat transfer coefficient (HTC) between the blank and tools during the hot stamping of boron steel. During the quenching period, HTC increased with the contact pressure between blank and lower tool. There is no obvious linear relationship between them. The maximum value of 1500 W/m2 K was achieved at contact pressure 18 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J/kg K)

M s :

Martensite start temperature (K)

T :

Temperature (K)

\( {T_{{i,{\text{B}}}}^{\text{Exp}} } \) :

Blank experimental temperatures

\( {T_{{i,{\text{B}}}}^{\text{Sim}} } \) :

Blank calculating temperatures

\( T_{{j,{\text{L}}}}^{\text{Exp}} \) :

Lower tool experimental temperatures

\( {T_{{i,{\text{L}}}}^{\text{Sim}} } \) :

Lower tool calculating temperatures

f M :

Martensite fraction (–)

k :

Thermal conductivity (W/m K)

t :

Time (s)

δ B :

Error function of blank temperature

δ L :

Error function of lower tool temperature

B:

Blank

L:

Lower tool

References

  1. T. Altan: Stamp. J., 2006, vol. 12, pp. 40–41.

    Google Scholar 

  2. B. Hochholdinger, P. Hora, H. Grass, and A. Lipp: 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2011), 21–26 August 2011, Seoul, Korea, K. Chung, N.H. Heung, H. Huh, F. Barlat, and M.-G. Lee, eds., 2011, pp. 618–25.

  3. A. Turetta, S. Bruschi, and A. Ghiotti: J. Mater. Process. Technol.,2006, vol. 177, pp. 396–400.

    Article  Google Scholar 

  4. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol.,2010, vol. 210, pp. 2103–118.

    Article  Google Scholar 

  5. M. Merklein, J. Lechler, and T. Stoehr: J. Int. Mater. Form., 2009,vol. 2, pp. 259–62.

    Article  Google Scholar 

  6. M. Eriksson, M. Oldenburg, M.C. Somani, and L.P. Karjalainen: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 277–94.

    Article  Google Scholar 

  7. M. Merklein and J. Lechler: SAE Int. J. Mater. Manuf., 2009, vol.1, pp. 411–26.

    Article  Google Scholar 

  8. B. AbdulHay, B. Bourouga, and C. Dessain: Int. J. Mater. Form., 2010, vol. 3, pp. 147–63.

    Article  Google Scholar 

  9. B. Abdulhay, B. Bourouga, and C. Dessain: Appl. Therm. Eng., 2011, vol. 31, pp. 674–85.

    Article  Google Scholar 

  10. J.V. Beck, B. Blackwell, and C.R. StClair: Inverse Heat Conduction: III-Posed Problems, Wiley, New York, NY, 1985, pp. 108–61.

    Google Scholar 

  11. C. Fieberg and R. Kneer: Int. J. Heat Mass Transf., 2008, vol. 51,pp. 1017–23.

    Article  Google Scholar 

  12. P. Hu, L. Ying, Y. Li, and Z.W. Liao: J. Mater. Process. Technol.,2013, vol. 213, pp. 1475–83.

    Article  Google Scholar 

  13. D. Lorenz: DYNAmore GmbH, Stuttgart, Germany, Private communication.

  14. G. Bergman: Modelling and Simulation of Simultaneous Forming and Quenching, Dissertation, Luleå University of Technology, 1999.

  15. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  16. M. Naderi, A. Saeed-Akbari, and W. Bleck: Mater. Sci. Eng. A, 2008, vol. 487, pp. 445–55.

    Article  Google Scholar 

  17. M. Geiger, M. Merklein, and C. Hoff: Adv. Mater. Res., 2005, vols. 6–8, pp. 795–804.

    Article  Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China (51205162) and National Natural Science Foundation of China (51275203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Additional information

Manuscript submitted April 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gao, P., Liu, C. et al. Experimental and Simulation Study for Heat Transfer Coefficient in Hot Stamping of High-Strength Boron Steel. Metall Mater Trans B 46, 2419–2422 (2015). https://doi.org/10.1007/s11663-015-0452-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0452-5

Keywords

Navigation