Skip to main content
Log in

Heat Transfer in Hot Stamping of High-Strength Boron Steel Sheets

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An optimization-based numerical procedure was developed to determine the temperature-dependent interface heat transfer coefficient (IHTC) between blank and tools during the hot stamping of boron steel. During the quenching period, IHTC changed with the temperature difference between blank and lower tool. The maximum value of 4300 W/mK was achieved at ΔT = 798 K (525 °C). The IHTC decreased with temperature difference and reached the lowest value (1400 W/mK) at about ΔT = 573 K (300 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J/kg K)

M s :

Martensite start temperature (K)

T :

Temperature (K)

\( T_{{i , {\text{B}}}}^{\text{Exp}} \) :

Blank experimental temperatures

\( T_{{i , {\text{B}}}}^{\text{Sim}} \) :

Blank calculating temperatures

\( T_{{j , {\text{L}}}}^{\text{Exp}} \) :

Lower tool experimental temperatures

\( T_{{j , {\text{L}}}}^{\text{Sim}} \) :

Lower tool calculating temperatures

f M :

Martensite fraction (–)

k :

Thermal conductivity (W/m K)

t :

Time (s)

δ B :

Error function of blank temperature

δ L :

Error function of lower tool temperature

B:

Blank

L:

Lower tool

References

  1. R. Neugebauer, T. Altan, M. Geiger, M. Kleiner, and A.Sterzing: CIRP Ann. Manuf. Technol., 2006, vol 55, pp. 793–816.

    Article  Google Scholar 

  2. T. Altan: Stamp. J., 2006, pp. 40–41.

  3. B. Hochholdinger, P. Hora, H. Grass, and A. Lipp: 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2011), 21–26 August 2011, Seoul, Korea, K. Chung, N.H. Heung, H.Huh, F. Barlat, and M.-G. Lee, eds., 2011, pp. 618–25.

  4. A. Turetta, S. Bruschi, and A. Ghiotti: J. Mater. Process. Technol., 2006, vol. 177, pp. 396–400.

    Article  Google Scholar 

  5. H. Karbasian and A.E.Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    Article  Google Scholar 

  6. M. Merklein, J. Lechler, and T. Stoehr: J. Int. Mater. Form., 2009,vol. 2, pp. 259–62.

    Article  Google Scholar 

  7. M. Eriksson, M. Oldenburg, M.C. Somani, and L.P. Karjalainen: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 277–94.

    Article  Google Scholar 

  8. M. Merklein and J. Lechler: SAE Int. J. Mater. Manuf., 2009, vol. 1, pp. 411–26.

    Google Scholar 

  9. B. Abdul Hay, B. Bourouga, and C. Dessain: Int. J. Mater. Form., 2010, vol. 3, pp. 147–63.

  10. B. Abdulhay, B. Bourouga, and C. Dessain: Appl. Therm. Eng., 2011, vol. 31, pp. 674–85.

    Article  Google Scholar 

  11. J.V. Beck, B. Blackwell, and C.R. St. Clair, Jr.: Inverse Heat Conduction: III-Posed Problems, Wiley, New York, NY, 1985, pp. 108–61.

  12. C. Fieberg and R. Kneer: Int. J. Heat Mass Transf., 2008, vol. 51, pp. 1017–23.

    Article  Google Scholar 

  13. P. Hu, L. Ying, Y. Li, and Z.W. Liao: J. Mater. Process. Technol., 2013, vol. 213, pp. 1475–83.

    Article  Google Scholar 

  14. D.Lorenz: DYNAmore GmbH, Stuttgart, Germany, Private communication.

  15. G. Bergman: Modelling and Simulation of Simultaneous Forming and Quenching, Dissertation, Luleå University of Technology, 1999.

  16. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  17. M. Naderi, A. Saeed-Akbari, and W. Bleck: Mater. Sci. Eng. A, 2008, vol. 487, pp. 445–55.

    Article  Google Scholar 

  18. M. Geiger, M. Merklein, and C. Hoff: Adv. Mater. Res., 2005, vol. 6–8, pp. 795-804.

    Article  Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China (Nos. 51205162 and 51275203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Additional information

Manuscript submitted February 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, X., Zhao, Y. et al. Heat Transfer in Hot Stamping of High-Strength Boron Steel Sheets. Metall Mater Trans B 45, 1192–1195 (2014). https://doi.org/10.1007/s11663-014-0082-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0082-3

Keywords

Navigation