Skip to main content
Log in

A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction (EBSD) has been used to investigate the microstructure and texture-based features of an industrial tertiary oxide scale formed on a micro-alloyed low-carbon steel from a hot strip mill. EBSD-derived maps demonstrate that the oxide scale consists primarily of magnetite (Fe3O4) with a small amount of hematite (α-Fe2O3) which scatters near the surface, at the oxide/steel interface and at the cracking edges. The results extracted from these maps reveal that there is a significant difference between the industrial and the laboratory oxide scales in their grain boundaries, phase boundaries, and texture evolutions. There are high proportions of special coincidence site lattice boundaries Σ3 and Σ13b in the magnetite of the industrial oxide scale, rather than the lower orders of Σ5, Σ7, and Σ17b, which develop in the experimental oxide scale. Within the phase boundaries, the orientation relationships between the magnetite and the hematite correspond to the matching planes and directions {111}Fe3O4||{0001}α-Fe2O3 and {110}Fe3O4||{110}α-Fe2O3. Magnetite in both of these oxide scales develops a relatively weak {001} fiber texture component including a strong {001}〈100〉 cube and a slightly strong {100}〈210〉 texture components. Unlike the {001}〈110〉 rotated cube component in the experimental oxide scale, the magnetite in the industrial tertiary oxide scale develops a strong {112}〈110〉 and a relatively strong {113}〈110〉 and {111}〈110〉 texture components. These findings have the potential to provide a convincing step forward for oxidation research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Brune, D. Senk, R. Walpot, and B. Steenken: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1400–8.

    Article  Google Scholar 

  2. M. Kiviö, L. Holappa, and T. Iung: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1194–204.

    Article  Google Scholar 

  3. F. Ma, G. Wen, P. Tang, G. Xu, F. Mei, and W. Wang: Metall. Mater. Trans. B, 2011, vol. 42, pp. 81–6.

    Article  Google Scholar 

  4. J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun: Mater. Des. 2014, vol. 53, pp. 332–7.

    Article  Google Scholar 

  5. T. Jia, Z. Liu, H. Hu, and G. Wang: ISIJ Int., 2011, vol. 51, pp. 1468–73.

    Article  Google Scholar 

  6. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang: Corros. Sci., 2014, vol. 85, pp. 115–25.

    Article  Google Scholar 

  7. M. Krzyzanowski, J.H. Beynon, and C.M. Sellars: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1483–90.

    Article  Google Scholar 

  8. Z. Jiang, X. Yu, J. Zhao, C. Zhou, Q. Huang, G. Luo, and K. Linghu: Adv. Mater. Res., 2014, vol. 1017, pp. 435–40.

    Article  Google Scholar 

  9. H.R. Le, and M.P.F. Sutcliffe: Metall. Mater. Trans. B, 2004, vol. 35, pp. 919–28.

    Article  Google Scholar 

  10. X. Yu, Z. Jiang, J. Zhao, D. Wei, J. Zhou, C. Zhou, and Q. Huang: Surf. Coat. Tech., 2015, vol. 272, pp. 39–49.

    Article  Google Scholar 

  11. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang: Wear, 2015, vol. 332–333, pp. 1286–92.

    Article  Google Scholar 

  12. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433–68.

    Article  Google Scholar 

  13. M. Krzyzanowski, J.H. Beynon, and D.C. Farrugia: Oxide Scale Behavior in High Temperature Metal Processing, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

    Book  Google Scholar 

  14. X.L. Yu, Z.Y. Jiang, X.D. Wang, D.B. Wei, and Q. Yang: Adv. Mater. Res., 2012, vol. 415–7, pp. 853–8.

    Google Scholar 

  15. S.S. Mohapatra, J.M. Jha, S.V. Ravikumar, A. Singh, C. Bhatacharya, S.K. Pal, S. Chakraborty: Exp. Heat Transfer, 2015, vol. 28, pp. 156–73.

    Article  Google Scholar 

  16. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2001, vol. 56, pp. 89–118.

    Article  Google Scholar 

  17. J. Miao, T.M. Pollock, and J.W. Jones: Acta Mater., 2012, vol. 60, pp. 2840–54.

    Article  Google Scholar 

  18. K.S. Chan: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2491–505.

    Article  Google Scholar 

  19. H. Abuluwefa, R.I.L. Guthrie, J.H. Root, and F. Ajersch: Metall. Mater. Trans. B, 1996, vol. 27, pp. 993–7.

    Article  Google Scholar 

  20. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, second ed., Cambridge University Press, New York, 2006, pp. 83–86.

    Book  Google Scholar 

  21. D.J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, New York, 2008, pp. 37–42.

    Google Scholar 

  22. S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei, and S. Ukai: Oxid. Met., 2014, vol. 81, pp. 357–71.

    Article  Google Scholar 

  23. B. Gleeson, S.M.M. Hadavi, and D.J. Young: Mater. High. Temp., 2000, vol. 17, pp. 311–9.

    Article  Google Scholar 

  24. S.I. Wright, M.M. Nowell, R. de Kloe, P. Camus, and T. Rampton: Ultramicroscopy, 2015, vol. 148, pp. 132–45.

    Article  Google Scholar 

  25. A.A. Gazder, A.A. Saleh, M.J. Nancarrow, D.R. Mitchell, and E.V. Pereloma: Steel Res. Int., 2015, vol. 86, No. 9999, pp. 1–11.

    Google Scholar 

  26. O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC press, Boca Raton, 2010, pp. 147–69.

  27. Y. Tomota, S. Daikuhara, S. Nagayama, M. Sugawara, N. Ozawa, Y. Adachi, S. Harjo, and S. Hattori: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6103–17.

    Article  Google Scholar 

  28. C. Juricic, H. Pinto, D. Cardinali, M. Klaus, C. Genzel, and A.R. Pyzalla: Oxid. Met., 2010, vol. 73, pp. 15–41.

    Article  Google Scholar 

  29. S. Liu, H. Wu, X. Li, H. Jiang, and D. Tang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 215–21.

    Article  Google Scholar 

  30. S. Birosca, D. Dingley, and R.L. Higginson: J. Microsc., 2004, vol. 213, pp. 235–40.

    Article  Google Scholar 

  31. R.L. Higginson, B. Roebuck, and E.J. Palmiere: Scripta Mater., 2002, vol. 47, pp. 337–42.

    Article  Google Scholar 

  32. B.K. Kim and J.A. Szpunar: Orientation imaging microscopy in research on high temperature oxidation, In: Schwartz, A.J. (Ed.), Electron Backscatter Diffraction in Materials Science, Springer, New York, 2009, pp. 361–393.

    Chapter  Google Scholar 

  33. L. Suárez, P. Rodríguez-Calvillo, Y. Houbaert, N.F. Garza-Montes-de-Oca, and R. Colás: Oxid. Met., 2011, vol. 75, pp. 281–95.

    Article  Google Scholar 

  34. M. Zhang and G. Shao: Mater. Sci. Eng. A, 2007, vol. 452–3, pp. 189–93.

    Google Scholar 

  35. X. Yu, Z. Jiang, Q. Yang: Adv. Mater. Res., 2011, vol. 145, pp. 111–6.

    Article  Google Scholar 

  36. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang: Corros. Sci., 2015, vol. 90, pp. 140–52.

    Article  Google Scholar 

  37. J.J.L. Mulders, R.T.J.P. Geurts, P.H.F. Trompenaars, and E.G.T. Bosch: Low energy ion milling or deposition, 2014, U.S. Patent Application 14/243,583.

  38. M. Afshar, and S. Zaefferer: Mater. Charact., 2015, vol. 101, pp. 130–5.

    Article  Google Scholar 

  39. H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth & Co., Berlin, 1982, pp. 3–41.

    Book  Google Scholar 

  40. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma, and Y. Matsuda: ISIJ Int., 1995, vol. 35, pp. 886–91.

    Article  Google Scholar 

  41. M. Graf, and R. Kawalla: Metall. Ital., 2014, vol. 2, pp. 43–49.

    Google Scholar 

  42. A.A. Gazder, V.Q. Vu, A.A. Saleh, P.E. Markovsky, O.M. Ivasishin, C.H. Davies, and E.V. Pereloma: J. Alloys Compound., 2014, vol. 585, pp. 245–59.

    Article  Google Scholar 

  43. X. Zhang, K. Matsuura, and M. Ohno: Micron, 2014, vol. 59, pp. 28–32.

    Article  Google Scholar 

  44. H.E. Evans, H.Y. Li, and P. Bowen: Scripta Mater., 2013, vol. 69, pp. 179–82.

    Article  Google Scholar 

  45. J.A. Nychka, C. Pullen, M.Y. He, and D.R. Clarke: Acta Mater., 2004, vol. 52, pp. 1097–105.

    Article  Google Scholar 

  46. H.E. Evans: Int. Mater. Rev., 1995, vol. 40, pp. 1–40.

    Article  Google Scholar 

  47. G.C. Wood, and J. Stringer: J. Phys. IV, 1993, vol. 3, pp. 65–74.

    Google Scholar 

  48. M. Schütze: Protective Oxide Scales and their Breakdown, Institute of Corrosion and Wiley, Chichester, 1997.

    Google Scholar 

  49. B.M. Morrow, R.J. McCabe, E.K. Cerreta, and C.N. Tomé: Metall. Mater. Trans. A, 2014, vol. 45, pp. 36–40.

    Article  Google Scholar 

  50. J.O. Liu, S. Somnath, and W.P. King: Sensor. Actuat. A-Phys., 2013, vol. 201, pp. 141–7.

    Article  Google Scholar 

  51. F. Yang, X. Zhao, and P. Xiao: Oxid. Met., 2014, vol. 81, pp. 331–43.

    Article  Google Scholar 

  52. J. Robertson, and M.I. Manning: Mater. Sci. Tech., 1990, vol. 6, pp. 81–92.

    Article  Google Scholar 

  53. V. Randle: The Measurement of Grain Boundary Geometry, IOP Publishing, Bristol and Philadelphia, 1993, pp. 33–56.

    Google Scholar 

  54. S. Kobayashi, A. Kamata, and T. Watanabe: Acta Mater., 2015, vol. 91, pp. 70–82.

    Article  Google Scholar 

  55. E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson: Corros. Sci., 2004, vol. 46, pp. 2383–404.

    Article  Google Scholar 

  56. J.H. Kim, B.K. Kim, D.I. Kim, P.P. Choi, D. Raabe, and K.W. Yi: Corros. Sci., 2015, vol. 96, pp. 52–66.

    Article  Google Scholar 

  57. J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee: Acta Mater., 2007, vol. 55, pp. 4935–46.

    Article  Google Scholar 

  58. A.S. Azar, L.E. Svensson, and B. Nyhus, Int. J. Fatigue, 2015, vol. 77, pp. 95–104.

    Article  Google Scholar 

  59. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331–41.

    Article  Google Scholar 

  60. S. Tsurekawa, S. Nakamichi, and T. Watanabe: Acta Mater., 2006, vol. 54, pp. 3617–26.

    Article  Google Scholar 

  61. M.A. Arafin, and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 119–28.

    Article  Google Scholar 

  62. R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, 317–46.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Daijun Yang at Shougang Research Institute of Technology, China, for the provision of the steel samples. Special thanks are given to Dr. Azdiar Gazder and Dr. Mitchell Nancarrow for their support and sharing enormous experiences on sample preparation and EBSD. The authors acknowledge the use of facilities within the UOW Electron Microscopy Centre. The authors wish to gratefully acknowledge the help of Dr. Madeleine Strong Cincotta in the final language editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyi Jiang or Cunlong Zhou.

Additional information

Manuscript submitted March 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Jiang, Z., Zhao, J. et al. A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill. Metall Mater Trans B 46, 2503–2513 (2015). https://doi.org/10.1007/s11663-015-0443-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0443-6

Keywords

Navigation