Skip to main content
Log in

In Situ Measurement of Stresses and Phase Compositions of the Zirconia Scale During Oxidation of Zirconium by Raman Spectroscopy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Raman spectroscopy was used to determine the stress and phase compositions of the zirconia scale in situ during the oxidation of zirconium at 600–900 °C in ambient air. The results show that the compressive stresses in the zirconia scale vary with the oxidation temperature and the oxidation time. The tetragonal (t) phase forms at the metal/oxide interface and the t to monoclinic phase transformation occurs far away from the interface during the oxide scale growth. The compressive growth stress at the oxidation temperature is favourable to the formation of t phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. R. Allen, R. J. M. Konings and A. T. Motta, in Comprehensive Nuclear Materials, eds. R. J. M. Konings, T. R. Allan, R. Stoller and S. Yamanaka (Elsevier Ltd., Amsterdam, 2012), pp. 49–68.

    Chapter  Google Scholar 

  2. A. P. Zhilyaev and J. A. Szpunar, Journal of Nuclear Materials 264, 1999 (327).

    Article  Google Scholar 

  3. C. Roy and B. Burgess, Oxidation of Metals 2, 1970 (235).

    Article  Google Scholar 

  4. C. Roy and G. David, Journal of Nuclear Materials 37, 1970 (71).

    Article  Google Scholar 

  5. J. H. Baek, Y. H. Jeong and I. S. Kim, Journal of Nuclear Materials 280, 2000 (235).

    Article  Google Scholar 

  6. A. Yilmazbayhan, A. T. Motta, R. J. Comstock, G. P. Sabol, B. Lai and Z. H. Cai, Journal of Nuclear Materials 324, 2004 (6).

    Article  Google Scholar 

  7. H. X. Zhang, D. Fruchart, E. K. Hlil, L. Ortega, Z. K. Li, J. J. Zhang, J. Sun and L. Zhou, Journal of Nuclear Materials 396, 2010 (65).

    Article  Google Scholar 

  8. B. Benali, M. H. Ghysel, I. Gallet, A. M. Huntz and M. Andrieux, Applied Surface Science 253, 2006 (1222).

    Article  Google Scholar 

  9. N. Pétigny, P. Barberis, C. Lemaignan, Ch. Valot and M. Lallemant, Journal of Nuclear Materials 280, 2000 (318).

    Article  Google Scholar 

  10. L. Kurpaska, J. Favergeon, L. Lahoche, G. Moulin, M. E. Marssi and J.-M. Roelandt, Oxidation of Metals 79, 2013 (261).

    Article  Google Scholar 

  11. J. Lin, H. Li, C. Nam and J. A. Szpunal, Journal of Nuclear Materials 334, 2004 (200).

    Article  Google Scholar 

  12. M. Bartosik, R. Pitonak and J. Keckes, Advanced Engineering Materials 13, 2011 (705).

    Article  Google Scholar 

  13. J. Birnie, C. Craggs, D. J. Gardiner and P. R. Graves, Corrosion Science 33, 1992 (1).

    Article  Google Scholar 

  14. M. Kemdehoundja, J. L. Grosseau-Poussard, J. F. Dinhut and B. Panicaud, Journal of Applied Physics 102, 2007 (093513).

    Article  Google Scholar 

  15. P. Y. Hou, J. Ager, J. Mougin and A. Galerie, Oxidation of Metals 75, 2011 (229).

    Article  Google Scholar 

  16. X. Zhao, F. Yang, A. Shinmi, P. Xiao, I. S. Molchan and G. E. Thompson, Scripta Materialia 63, 2010 (117).

    Article  Google Scholar 

  17. J. Mougin, N. Rosman, G. Lucazeau and A. Galerie, Journal of Raman Spectroscopy 32, 2001 (739).

    Article  Google Scholar 

  18. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 1996 (267).

    Article  Google Scholar 

  19. G. Pezzotti and A. A. Porporati, Journal of Biomedical Optics 9, 2004 (372).

    Article  Google Scholar 

  20. V. Presser, M. Keuper, C. Berthold and K. G. Nickel, Applied Spectroscopy 63, 2009 (1288).

    Article  Google Scholar 

  21. P. Tejland and H. O. Andren, Journal of Nuclear Materials 430, 2012 (35).

    Article  Google Scholar 

  22. R. E. Westerman, Journal of the Electrochemical Society 111, 1964 (140).

    Article  Google Scholar 

  23. V. N. Konev, A. L. Nadolskii and L. A. Minyacheva, Oxidation of Metals 47, 1997 (237).

    Article  Google Scholar 

  24. D. H. Bradhurst and P. M. Heuer, Journal of Nuclear Materials 37, 1970 (35).

    Article  Google Scholar 

  25. N. B. Pilling and R. E. Bedworth, Journal of the Institute of Metals 29, 1923 (529).

    Google Scholar 

  26. F. N. Rhines and J. S. Wolf, Metallurgical Transactions 1, 1970 (1701).

    Article  Google Scholar 

  27. D. R. Clarke, Acta Materialia 51, 2003 (1393).

    Article  Google Scholar 

  28. B. Panicaud, J. L. Grosseau-Poussard and J. F. Dinhut, Computational Materials Science 42, 2008 (286).

    Article  Google Scholar 

  29. S. Maharjan, X. Zhang and Z. Wang, Oxidation of Metals 77, 2012 (93).

    Article  Google Scholar 

  30. E. Y. Fogaing, Y. Lorgouilloux, M. Huger and C. P. Gault, Journal of Materials Science 41, 2006 (7663).

    Article  Google Scholar 

  31. U. Messerschmidt, B. Baufeld and D. Baither, Key Engineering Materials 153–154, 1998 (143).

    Article  Google Scholar 

  32. S. J. Bull, Oxidation of Metals 49, 1998 (1).

    Article  Google Scholar 

  33. B. Holmberg and T. Dagerhamn, Acta Chemica Scandinavica 15, 1961 (919).

    Article  Google Scholar 

  34. A. T. Donaldson and H. E. Evans, Journal of Nuclear Materials 99, 1981 (47).

    Article  Google Scholar 

  35. A. T. Donaldson and H. E. Evans, Journal of Nuclear Materials 99, 1981 (57).

    Article  Google Scholar 

  36. D. R. Clarke and F. Adar, Journal of the American Ceramic Society 65, 1982 (284).

    Article  Google Scholar 

  37. N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G. D. W. Smith, J. M. Sykes, S. S. Yardley, K. L. Moore, S. Lyon, R. Cottis, M. Preuss and C. R. M. Grovenor, Acta Materialia 60, 2012 (7132).

    Article  Google Scholar 

  38. X. IItis, F. Lefebvre and C. Lemaignan, Journal of Nuclear Materials 224, 1995 (121).

    Article  Google Scholar 

  39. R. C. Garvie, Journal of Physical Chemistry 69, 1965 (1238).

    Article  Google Scholar 

  40. E. Djurado, P. Bouvier and G. Lucazeau, Journal of Solid State Chemistry 149, 2000 (399).

    Article  Google Scholar 

  41. G. L. Kulcinski, Journal of the American Ceramic Society 51, 1968 (582).

    Article  Google Scholar 

  42. I. A. El-Shanshoury, V. A. Rudenko and I. A. Ibrahim, Journal of the American Ceramic Society 53, 1970 (264).

    Article  Google Scholar 

  43. Ch. Valot, D. Ciosmak and M. Lallemant, Solid State Ionics 101–103, 1997 (769).

    Article  Google Scholar 

  44. V. Busser, J. Desquines, S. Fouguet, M. C. Bauetto and J. P. Mardon, Materials Science Forum 595–598, 2008 (419).

    Article  Google Scholar 

  45. E. Polatidis, P. Frankel, J. Wei, M. Klaus, R. J. Comstock, A. Ambard, S. Lyon, R. A. Cottis and M. Preuss, Journal of Nuclear Materials 432, 2013 (102).

    Article  Google Scholar 

  46. E. Polatidis, PhD Thesis, University of Manchester (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xiao.

Additional information

Fan Yang and Xiaofeng Zhao have contributed equally to this work.

Appendix: Determination of the Piezospectroscopic Tensor of Zirconia Scale

Appendix: Determination of the Piezospectroscopic Tensor of Zirconia Scale

To obtain the stress from the Raman peak shift, the piezospectroscopic tensor П ij should be determined. Therefore, a designed four-point bending test, in which the strain can be applied precisely, was carried out. A schematic view of the experiment setup is shown in Fig. 6a. A strain gauge was located at the bottom oxide layer and used to precisely measure the applied strain. As illustrated in Fig. 6b, the biaxial stresses around the strain gauge are:

$$ \left\{ \begin{gathered} \sigma_{x} = \sigma_{0} + \varepsilon E, \hfill \\ \sigma_{y} = \sigma_{0} - \upsilon \varepsilon E, \hfill \\ \end{gathered} \right. $$
(4)

where σ 0 is the original stress inside the oxide scale, ε is the applied strain, υ is the Poisson ratio and E is the Young’s modulus of the zirconia scale. Therefore, the stress due to the applied strain in the bottom oxide layer is:

$$ \sigma = \overline{\sigma } - \sigma_{0} = \frac{{\sigma_{x} + \sigma_{y} }}{2} - \sigma_{0} = \frac{1 - \upsilon }{2}\varepsilon E. $$
(5)
Fig. 6
figure 6

a A schematic view of the four-point-bending test on the zirconia layer, b an illustration of the biaxial stresses around the strain gauge, and c variation of the wavenumber around 330 cm−1 (black rectangular symbols) and its peak shift as a function of the applied strain. The solid lines are the linear fittings of the wavenumbers and the peak shifts

The top oxide layer, where the Raman spectra were collected from, was under compressive stress, which has the same magnitude with the tensile stress in the bottom oxide layer. Thus, the compressive stress in the top oxide layer due to the applied strain is written as:

$$ \sigma = - \frac{1 - \upsilon }{2}\varepsilon E. $$
(6)

Combining Eq. (6) and (1), the Raman peak shift has a linear relationship with the applied strain:

$$ \Updelta \nu = - \Uppi \cdot \frac{1 - \upsilon }{2}E \cdot \varepsilon. $$
(7)

Figure 6c shows the variation of the Raman peak position and its peak shift as a function of the applied strain. From the slope of the linear relationship, using E = 194 GPa (measured by nano-indentation [MTS Systems Corp., USA]) and ν = 0.25, the constant П is obtained as −3.21 cm−1 GPa−1. Therefore, the relationship between peak shift and the stress state is established as:

$$ \Updelta \nu = - 3.21\sigma. $$
(8)

Unless otherwisely indicated, the stresses of the oxide scale were all calculated based on the peak shift of the 330 cm−1 peak according to Eq. (8) in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Zhao, X. & Xiao, P. In Situ Measurement of Stresses and Phase Compositions of the Zirconia Scale During Oxidation of Zirconium by Raman Spectroscopy. Oxid Met 81, 331–343 (2014). https://doi.org/10.1007/s11085-013-9433-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9433-8

Keywords

Navigation