Skip to main content
Log in

Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inclusion type and content in steel is critical in steelmaking, affecting both productivity through clogging, and downstream physical properties of the steel. They are normally removed from steel by reacting with a slag (liquid oxide) phase. For efficient inclusion removal, the inclusions must attach/bond with this liquid phase. The strength of the attachment can be in part characterized by the wettability of the liquid oxide on the inclusions. In this study, the dynamic wetting of liquid oxides of the CaO-Al2O3-SiO2-MgO system on a solid spinel (MgAl2O4) substrate with low porosity of 1.9 pct was measured at 1773 K (1500 °C) using a modified sessile drop technique. The dynamic contact angle between the liquid and solid spinel was determined for different CaO/Al2O3 mass percent ratios ranging from 0.98 to 1.55. Characteristic curves of wettability (θ) vs time showed a rapid decrease in wetting in the first 10 seconds tending to a plateau value at extended times. A mathematical model for spreading behavior of liquid oxides by Choi and Lee was adopted and shown to provide a reasonable representation of the spreading behavior with time. The chemical interaction at the interface between spinel (MgAl2O4) and slag was analyzed by carrying out detailed thermodynamic evaluation and characterization using scanning electron microscopy/energy dispersive spectroscopy. There is evidence of liquid penetrating the substrate via pores and along grain boundaries, forming a penetration layer in the substrate. The depth of the penetration layer was found to be a function of substrate porosity and sample cooling rate. It decreased from ~350 µm for 6.7 pct-porous substrate to ~190 µm for substrate with porosity of 1.9 pct and from ~190 µm to ~50 µm for a slow-cooled liquid oxide-spinel substrate sample in the furnace to a rapidly cooled liquid cooled-spinel substrate sample, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.H. Lowe and A. Mitchell: Clean Steel, Institute of Materials, London, 1995, pp. 223-32.

    Google Scholar 

  2. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, New York, 1993, pp. 254-69.

    Google Scholar 

  3. H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, M. Chapman, and B.J. Monaghan: Materials Science and Technology Conference, Toronto, Canada, AIST, Warrendale, 2013, pp. 507–14.

  4. L. Jonsson and P. Jönsson: ISIJ Int., 1996, vol. 36, pp. 1127-34.

    Article  Google Scholar 

  5. L. Zhang, S. Taniguchi and K. Matsumoto: Ironmaking & Steelmaking, 2002, vol. 29, pp. 326-36.

    Article  Google Scholar 

  6. Y. Miki, H. Kitaoka, T. Sakuraya and T. Fujii: ISIJ Int., 1992, vol.32, pp. 142-49.

    Article  Google Scholar 

  7. B.J. Monaghan and L. Chen: Ironmaking & Steelmaking, 2006, vol. 33, pp. 323-30.

    Article  Google Scholar 

  8. B.J. Monaghan, L. Chen and J. Sorbe: Ironmaking & Steelmaking, 2005, vol. 32, pp. 258-64.

    Article  Google Scholar 

  9. K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1941-54.

    Article  Google Scholar 

  10. S. Sridhar and A.W. Cramb: Metall. Trans. B, 2000, vol. 31, pp. 406-10.

    Article  Google Scholar 

  11. M. Valdez, K. Prapakorn, A.W. Cramb and S. Seetharaman: Steel Res. Int., 2001, vol. 72, pp. 291-97.

    Google Scholar 

  12. M. Valdez, K. Prapakorn, A.W. Cramb and S. Sridhar: Ironmaking & Steelmaking, 2002, vol. 29, pp. 47-52.

    Article  Google Scholar 

  13. X. Yu, R.J. Pomfret and K.S. Coley: Metall. Mater. Trans. B, 1997, vol. 28, pp. 275-79.

    Article  Google Scholar 

  14. K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1998, vol. 7, pp. 478-89.

    Google Scholar 

  15. K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3633-42.

    Article  Google Scholar 

  16. K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3643-49.

    Article  Google Scholar 

  17. S. Taira, K. Nakashima and K. Mori: ISIJ Int., 1993, vol. 33, pp. 116-23.

    Article  Google Scholar 

  18. K. Ueda: Mater. Trans. JIM, 1999, vol. 40, pp. 989-93.

    Article  Google Scholar 

  19. S. Seetharaman, ed.: Fundamentals of Metallurgy, Woodhead Publishing in Materials, Cambridge, England, 2008, pp. 23–25.

  20. J.Y. Choi and H.G. Lee: ISIJ Int., 2003, vol. 43, pp. 1348-55.

    Article  Google Scholar 

  21. H. Todoroki and S. Inada: Bull. Iron Steel Inst. Jpn, 2003, vol. 8, pp. 575-80.

    Google Scholar 

  22. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

    Article  Google Scholar 

  23. L. Frank: Iron and Steelmaker, 1999, vol. 26, pp. 33-39.

    Google Scholar 

  24. G.J.W. Kor: First International Calcium Treatment Symposium, Glasgow, UK, The Institute of Metals, London, U.K., 1988, pp. 39–44.

  25. N. Verma, P. Pistorius, R. Fruehan, M. Potter, H. Oltmann and E. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830-40.

    Article  Google Scholar 

  26. N. Dogan, R.J. Longbottom, M.H. Reid, M.W. Chapman, P. Wilson, L. Moore, and B.J. Monaghan: Ironmak. Steelmak., 2014, accepted.

  27. M. Jiang, X. Wang, B. Chen and W. Wang, ISIJ Int., 2010, vol. 50, pp. 95-104.

    Article  Google Scholar 

  28. S. Yang, Q. Wang, L. Zhang, J. Li, K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731-50.

    Article  Google Scholar 

  29. C.W. Seo, S.H. Kim, S.K. Jo, M.O. Suk and S.M. Byun: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 790-97.

    Article  Google Scholar 

  30. T. Nishi and K. Shinme: Tetsu-to-Hagane, 1998, vol. 84, pp. 837–43.

    Google Scholar 

  31. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Elsevier, Oxford, 1999, pp. 106–47.

    Google Scholar 

  32. J.G. Swanson and R.K. Fuyat: Natl. Bur. Stand (U.S.) Circ., 1953, vol. 539(11), p. 35.

  33. A. 1774.5 Method 5: The Determination of Density Porosity and Water Adsorption in Refractories and Refractory Materials, Standards Australia, 2004.

  34. L.W. Schroeder: Contact Angle, Wettability and Adhesion, CRC Press, Boca Raton, 1993, pp. 349–59.

    Google Scholar 

  35. Excel, Microsoft Office, Version 14.0.6106.5005 (32-bit), 2010.

  36. P.V. Riboud, Y. Roux, L. Lucas and H. Gaye: Fachberichte Hüttenpraxis Metallweiterverarbeitung, 1981, vol. 19, pp. 859-69.

    Google Scholar 

  37. K. Mills: National Physical Laboratory, 1.07 edn., U.K., 1991.

  38. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson and S.M. Martin: Calphad, 2002, vol. 26, pp. 229-71.

    Article  Google Scholar 

  39. A.W. Cramb, ed.: The Making, Shaping and Treating of Steel, 11th ed., Casting Volume, AIST, Warrendale, 2010, pp. 65–84.

  40. R.J. Fruehan, ed.: The Making, Shaping and Treating of Steel, 11th ed., Steelmaking and Refining Volume, AIST, Warrendale, 2012, pp. 687–93.

  41. L. Hong, W. Xinhua, Y. Sasaki and M. Hino: Mater. Trans., 2007, vol. 48, pp. 2170-73.

    Article  Google Scholar 

  42. W.E. Lee and S. Zhang: Int. Mat. Rev., 1999, vol.44, pp. 77-104.

    Article  Google Scholar 

Download references

Acknowledgments

The support of BlueScope Steel and the use of the Australian Research Council funded JEOL–JSM6490 LV SEM at the UOW Electron Microscopy Centre is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Monaghan.

Additional information

Manuscript submitted May 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeyazdan, H., Dogan, N., Rhamdhani, M.A. et al. Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel. Metall Mater Trans B 46, 208–219 (2015). https://doi.org/10.1007/s11663-014-0207-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0207-8

Keywords

Navigation