Skip to main content
Log in

Mathematical Modeling of Heat Transfer in Mold Copper Coupled with Cooling Water During the Slab Continuous Casting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The heat transfer in mold copper plays an important role in the solidification behavior of steel. In this study, a three-dimensional heat transfer model coupled with flow behavior of the cooling water was established to analyze the temperature field of the copper and water slots. And this model was verified by the measured temperature rise of cooling water at the inlet and outlet of slots. The advantages of this model were obtained by comparing it with Dittus–Boelter model and the Sleicher–Rouse model, which did not consider the flow of water. The results show that the Dittus–Boelter model has the highest temperature and that the coupled model has the lowest temperature. Moreover, the coupled model includes calculation of the temperature and velocity field of the cooling water inside the slots. This temperature information is very helpful for predicting the water boiling in the slots. In addition, the coupled model shows that the temperature, heat flux, and heat transfer coefficient around the water slot wall are different from the conventional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

λ :

Thermal conductivity, W m-1 K-1

Cp :

Specific heat, J kg−1 K−1

T :

Temperature, K

x :

Coordinate for measure of distance, m

ρ :

Density, kg/m3

u :

Velocity, m/s

P :

Pressure, N/m2

k :

Turbulent kinetic energy, m2/s2

ε :

Dissipation rate of turbulence energy, m2/s3

h :

Heat transfer coefficient, W m−2 K−1

q :

Heat flux, W/m2

g :

Acceleration due to gravity, m/s2

μ :

Kinetic viscosity, kg s−1 m−1

c :

Copper

w :

Water

M :

The first near-wall node M in water

References

  1. M. Janik and H. Dyja: J. Mater. Process. Tech., 2004, vol. 157, pp. 177–82.

    Article  Google Scholar 

  2. P.E.R. Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 109–122.

    Article  Google Scholar 

  3. M.R. Ridolfi, S. Fraschetti, A. de Vito, and L.A. Ferro: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1293–309.

  4. P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425–34.

    Article  Google Scholar 

  5. A. Najera-Bastida, R.D. Morales, S. Garcia-Hernandez, E. Torres-Alonso, and A. Espino-Zarate: ISIJ Int., 2010, vol. 50, pp. 830–38.

    Article  Google Scholar 

  6. B. Zhao, B.G. Thomas, S.P. Vanka, and R.J. O’Malley: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 801–23.

    Article  Google Scholar 

  7. J.L. Shen, D.F. Chen, X. Xie, L.L. Zhang, Z.H. Dong, M.J. Long, and X.B. Ruan: Ironmaker Steelmaker, 2013, vol. 40, pp. 263–75.

    Article  Google Scholar 

  8. J.K. Park, B.G. Thomas, I.V. Samarasekera, and U.S. Yoon: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 425–36.

    Article  Google Scholar 

  9. M. Gonzalez, M.B. Goldschmit, A.P. Assanelli, E.F. Berdaguer, and E.N. Dvorkin: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 455–73.

    Article  Google Scholar 

  10. B.G. Thomas, M. Langeneckert, L. Castella, M. Dziuba, G. Di Gresia, and W. Balante: Ironmaker Steelmaker, 2003, vol. 30, pp. 235–39.

  11. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  Google Scholar 

  12. L.C. Hibbeler, B.G. Thomas, R.C. Schimmel, and G. Abbel: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1156–72.

    Article  Google Scholar 

  13. S. Koric, L.C. Hibbeler, R. Liu, and B.G. Thomas: Numer. Heat Tr. B-Fund., 2010, vol. 58, pp. 371–92.

    Article  Google Scholar 

  14. B. Santillana, L.C. Hibbeler, B.G. Thomas, A. Hamoen, A. Kamperman, and W. Van der Knoop: ISIJ Int., 2008, vol. 48, pp. 1380-88.

  15. E.-Yi Ko, K.-Woo Yi, J.-Kil Park, J.W. Cho, and H.-Jung Shin: Metall. Mater. Int., 2010, vol. 16, pp. 281–88.

  16. FLUENT: Lebanon: Fluent. Inc. (2006).

  17. L. Xudong, Z. Miaoyong, and C. Nailiang: Acta Metall. Sin., 2006, vol. 42, pp. 1081–86.

    Google Scholar 

  18. R. Chaudhary, G.G. Lee, B.G. Thomas, and S.H. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870–84.

    Article  Google Scholar 

  19. K. Cai: The Continuous Casting Mold, 1st ed., Metallurgical Industry Press, Beijing, China, 2008, p. 13.

  20. F.W. Dittus and L.M.K. Boelter: Heat Transfer in Automobile Radiators of the Tubular Type. Publications in Engineering, University of California, Berkeley, CA, 1930, vol. 2, pp. 443–61.

  21. C.A. Sleicher and M.W. Rouse: Int. J. Heat Mass. Tran., 1975, vol. 18, pp. 677–83.

    Article  Google Scholar 

  22. L.C. Hibbeler, M.M. Langeneckert, J. Iwasaki, I. Hwang, R.J. O’Malley, and B.G. Thomas: AISTech 2012, Atlanta, GA, 2012.

Download references

Acknowledgments

This work is financially supported by the Fundamental Research Funds for the Central Universities of China, Project No. CDJZR12110037, and the Natural Science Foundation of China, Project No. 51374260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfu Chen.

Additional information

Manuscript submitted December 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Chen, D., Long, H. et al. Mathematical Modeling of Heat Transfer in Mold Copper Coupled with Cooling Water During the Slab Continuous Casting Process. Metall Mater Trans B 45, 2442–2452 (2014). https://doi.org/10.1007/s11663-014-0127-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0127-7

Keywords

Navigation