Skip to main content
Log in

Investigation on Heat Transfer in Molds with Different Water-Cooling Structures Under Billet High-Speed Continuous Casting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The excellent water-cooling structure contributes to achieve efficient and reasonable heat transfer in mold, which is indispensable to realize billet high-speed continuous casting. Therefore, five kinds of unconventional cooling structures were designed, and the corresponding three-dimensional molten steel–mold–cooling water models coupled with flow, heat transfer, and solidification were established based on them. Then, the accuracy of models was verified by comparing heat flux with other studies. Finally, the temperature distribution characteristics in models under high casting speed were analyzed mainly, and the optimal water-cooling structure was proposed. The results show that high casting speed is beneficial to uniform the temperature of the strand, but will greatly reduce its thickness. Compared with other structures, the composite structure consisting of water seam and water channel has the best cooling effect. By using this water-cooling structure, the maximum hot face temperature of copper tube will reduce to 469 K and make mold temperature distribution more uniform at 6.5 m min−1. Meanwhile, it can take away 5.58 pct more heat than conventional water seam in the process of molten steel passing through mold. Therefore, mold with water seam and water channel can further improve the production efficiency on the premise of ensuring the quality of the strand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Janik and H. Dyja: J. Mater. Process. Technol., 2004, vol. 157–158, pp. 177–82. https://doi.org/10.1016/j.jmatprotec.2004.09.026.

    Article  CAS  Google Scholar 

  2. J. Yang, D.F. Chen, F.T. Qin, M.J. Long, and H.M. Duan: Metals, 2020, vol. 10, p. 1165. https://doi.org/10.3390/met10091165.

    Article  Google Scholar 

  3. X.T. Li, Z.H. Zhang, M. Lv, M. Fang, and K.L. Liu: Steel Res. Int., 2022, vol. 93, p. 2100673. https://doi.org/10.1002/srin.202100673.

    Article  CAS  Google Scholar 

  4. P. Xu, S.J. Wang, Y.Z. Zhou, D.F. Chen, M.J. Long, and H.M. Duan: Front. Mater., 2022, vol. 9, p. 8419621. https://doi.org/10.3389/fmats.2022.841961.

    Article  Google Scholar 

  5. P. Jayakrishna, S. Chakraborty, S. Ganguly, and P. Talukdar: Int. Commun. Heat Mass Transf., 2020, vol. 119, p. 104984. https://doi.org/10.1016/j.icheatmasstransfer.2020.104984.

    Article  Google Scholar 

  6. I.V. Samarasekera and J.K. Brimacombe: Metall. Trans. B, 1982, vol. 13B, pp. 105–16. https://doi.org/10.1007/BF02666961.

    Article  CAS  Google Scholar 

  7. I.V. Samarasekera, D.L. Anderson, and J.K. Brimacombe: Metall. Trans. B, 1982, vol. 13B, pp. 91–94. https://doi.org/10.1007/BF02666960.

    Article  CAS  Google Scholar 

  8. S. Chakraborty, S. Ganguly, and P. Talukdar: Int. J. Therm. Sci., 2020, vol. 152, p. 106305. https://doi.org/10.1016/j.ijthermalsci.2020.106305.

    Article  Google Scholar 

  9. X.S. Zheng, M.H. Sha, and J.Z. Jin: Acta Metall. Sin., 2006, vol. 19, pp. 176–82. https://doi.org/10.1016/S1006-7191(06)60041-0.

    Article  Google Scholar 

  10. W. Luo, B. Yan, and X. Lu: Ironmak. Steelmak., 2013, vol. 40, pp. 582–89. https://doi.org/10.1179/1743281212Y.0000000084.

    Article  CAS  Google Scholar 

  11. S. Koric, B.G. Thomas, and V.R. Voller: Numer. Heat Transf. B, 2010, vol. 57, pp. 396–413. https://doi.org/10.1080/10407790.2011.540954.

    Article  CAS  Google Scholar 

  12. L.L. Zhang, D.F. Chen, M.J. Long, H.B. Chen, Y.W. Huang, and Z.H. Dong: Metals, 2016, vol. 6, p. 104. https://doi.org/10.3390/met6050104.

    Article  Google Scholar 

  13. X. Xie, D.F. Chen, H.J. Long, M.J. Long, and K. Lv: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2442–52. https://doi.org/10.1007/s11663-014-0127-7.

    Article  CAS  Google Scholar 

  14. X.D. Liu and M.Y. Zhu: ISIJ Int., 2006, vol. 46, pp. 1652–59. https://doi.org/10.2355/isijinternational.46.1652.

    Article  CAS  Google Scholar 

  15. F.M. Du, X.D. Wang, M. Yao, and X.B. Zhang: J. Mater. Process. Technol., 2014, vol. 214, pp. 2676–83. https://doi.org/10.1016/j.jmatprotec.2014.04.029.

    Article  CAS  Google Scholar 

  16. F.M. Du, K.G. Zhang, C.D. Li, W.B. Chen, P.C. Zhang, and X.D. Wang: J. Mater. Process. Technol., 2021, vol. 288, p. 116871. https://doi.org/10.1016/j.jmatprotec.2020.116871.

    Article  Google Scholar 

  17. B.G. Thomas, J. Jiang, and D. Lorento: Proceeding of the 5th European Continuous Casting Conference, Nice, France, 2005. http://pdfs.semanticscholar.org/4cae/2fcc237136bd7653cf64cd6af6f1b13d5ee0.pdf.

  18. H.L. Xu, G.H. Wen, W. Sun, K.Z. Wang, and B. Yan: J. Iron Steel Res., 2010, vol. 17, pp. 17–22. https://doi.org/10.1016/S1006-706X(10)60191-4.

    Article  CAS  Google Scholar 

  19. B.G. Thomas, M. Langeneckert, L. Castellá, M. Dziuba, G.D. Gresia, and W. Balante: Ironmak. Steelmak., 2003, vol. 30, pp. 235–39. https://doi.org/10.1179/030192303225009579.

    Article  CAS  Google Scholar 

  20. R. Chen, H.F. Shen, and B.C. Liu: Ironmak. Steelmak., 2013, vol. 38, pp. 546–51. https://doi.org/10.1179/1743281211Y.0000000049.

    Article  CAS  Google Scholar 

  21. M.G. Xu and M.Y. Zhu: ISIJ Int., 2015, vol. 55, pp. 791–98. https://doi.org/10.2355/isijinternational.55.791.

    Article  CAS  Google Scholar 

  22. H.D. Wu, J.G. Chen, and P. Zun: Appl. Therm. Eng., 2020, vol. 173, p. 115235. https://doi.org/10.1016/j.applthermaleng.2020.115235.

    Article  CAS  Google Scholar 

  23. C.S. Li and B.G. Thomas: 85th Steelmaking Conference Proceedings, Nashville, Warrendale, 2002. https://www.scopus.com/inward/record.url?eid=2-s2.0-0036080090&partnerID=10&rel=R3.0.0.

  24. C. Chow and I.V. Samarasekera: Ironmak. Steelmak., 2013, vol. 29, pp. 53–60. https://doi.org/10.1179/030192302225001938.

    Article  CAS  Google Scholar 

  25. S. Chakraborty, S. Ganguly, and P. Talukdar: J. Mater. Process. Technol., 2019, vol. 270, pp. 132–41. https://doi.org/10.1016/j.jmatprotec.2019.02.032.

    Article  Google Scholar 

  26. T.G. O’Connor and J.A. Dantzig: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 443–57. https://doi.org/10.1007/BF02663395.

    Article  Google Scholar 

  27. G. Li, B.G. Thomas, and J.F. Stubbins: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2491–2502. https://doi.org/10.1007/s11661-000-0194-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports provided by the National Natural Science Foundation of China, Project Nos. 51874060 and 52074053.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengfu Chen or Mujun Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Zhou, Y., Huang, Z. et al. Investigation on Heat Transfer in Molds with Different Water-Cooling Structures Under Billet High-Speed Continuous Casting. Metall Mater Trans B 54, 1807–1818 (2023). https://doi.org/10.1007/s11663-023-02795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02795-4

Navigation