Skip to main content
Log in

Experimental Characterization of Heat Transfer Coefficients During Hot Forming Die Quenching of Boron Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The heat transfer coefficient (HTC) between the sheet metal and the cold tool is required to predict the final microstructure and mechanical properties of parts manufactured via hot forming die quenching. Temperature data obtained from hot stamping experiments conducted on boron steel blanks were processed using an inverse heat conduction algorithm to calculate heat fluxes and temperatures at the blank/die interface. The effect of the thermocouple response time on the calculated heat flux was compensated by minimizing the heat imbalance between the blank and the die. Peak HTCs obtained at the end of the stamping phase match steady-state model predictions. At higher blank temperatures, the time-dependent deformation of contact asperities is associated with a transient regime in which calculated HTCs are a function of the initial stamping temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Usibor 1500P® is a registered trademark belonging to ArcelorMittal.

Abbreviations

C p :

Specific heat (J kg−1 K−1)

H :

Microhardness (MPa)

J :

Heat balance deficit (–)

Kn :

Knudsen number (–)

M s :

Martensite start temperature (K)

T :

Temperature (K)

T 0 :

Stamping temperature (K)

X :

Dimensionless surface roughness ratio (–)

Y :

Dimensionless gap thickness ratio (–)

b :

Peak-to-valley surface roughness (m)

d :

Thickness (m)

d eff :

Effective gap thickness (m)

f M :

Martensite fraction (–)

g :

Temperature jump distance (m)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

m :

Mean asperity slope (rad)

p :

Stamping pressure (MPa)

r :

Regularization parameter (–)

t :

Time (seconds)

x :

FE model coordinate (m)

Φ:

Heat flux (W m−2)

α :

Accommodation coefficient (–)

ρ :

Density (kg m−3)

σ :

RMS surface roughness (m)

τ :

Thermocouple response time (seconds)

M:

Martensite

TC:

Thermocouple

b:

Bottom die

c:

Contact spot

d:

Die (top and bottom)

g:

Air gap

max:

Maximum value

mfp:

Mean free path

s:

Surface

sub:

Substrate

t:

Top die

u:

Usibor 1500P® blank

γ :

Austenite

References

  1. A. Turetta, S. Bruschi, and A. Ghiotti (2006) J Mater Process Technol 177:396–400.

    Article  CAS  Google Scholar 

  2. Y. Dahan, Y. Chastel, P. Duroux, P. Hein, E. Massoni, and J. Wilsius: in Proceedings of the International Deep Drawing Research Group (IDDRG) 2006 Conference, 19–21 June 2006, Porto, Portugal, A.D. Santos and A.B. da Rocha, eds., pp. 395–402.

  3. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker, and K. Steinhoff, Steel Res. Int., 2008, vol. 79, no. 2, pp. 92-7.

    CAS  Google Scholar 

  4. M. Merklein, J. Lechler, and M. Geiger: CIRP Ann. Manuf. Technol., 2006, vol. 55, no. 1, pp. 229-32.

    Article  Google Scholar 

  5. K. Mori, S. Maki, and Y. Tanaka: CIRP Ann. Manuf. Technol., 2005, vol. 54, no. 1, pp. 209–12.

    Article  Google Scholar 

  6. T. Altan: Stamp. J., December 2006, pp. 40–41.

  7. B. Hochholdinger, P. Hora, H. Grass, and A. Lipp, AIP Conference Proceedings, 2011, vol. 1383, pp. 618-25.

    Article  CAS  Google Scholar 

  8. H. Karbasian and A.E. Tekkaya (2010) Journal of Materials Processing Technology 210:2103–18.

    Article  CAS  Google Scholar 

  9. M. Merklein and J. Lechler: SAE Int. J. Mater. Manuf., 2009, vol. 1, no. 1, pp. 411-26.

    Google Scholar 

  10. M.-G. Lee, S.-J. Kim, H.N. Han, and W.C. Jeong (2009) International Journal of Mechanical Sciences 51:888–98.

    Article  Google Scholar 

  11. Z.W. Xing, J. Bao, and Y.Y. Yang, Materials Science and Engineering A, 2009, vol. 499, pp. 28–31.

    Article  Google Scholar 

  12. M. Merklein, J. Lechler, and T. Stoehr, Int. J. Mater. Form., 2009, vol. 2, suppl. 1, pp. 259-62.

    Article  Google Scholar 

  13. A. Bardelcik, C.P. Salisbury, S. Winkler, M.A. Wells, and M.J. Worswick (2010) International Journal of Impact Engineering 37:694–702.

    Article  Google Scholar 

  14. M.C. Somani, L.P. Karjalainen, M. Eriksson, and M. Oldenburg, ISIJ International, 2001, vol. 41, no. 4, pp. 361–7.

    Article  CAS  Google Scholar 

  15. M. Naderi: Doctoral Thesis, RWTH Aachen, Aachen, Germany, 2007.

  16. M. Eriksson, M. Oldenburg, M.C. Somani, and L.P. Karjalainen (2002) Modelling Simul. Mater. Sci. Eng. 10:277–94.

    Article  CAS  Google Scholar 

  17. A. Polozine and L. Schaeffer, Journal of Materials Processing Technology, 2008, vol. 195, pp. 260–6.

    Article  CAS  Google Scholar 

  18. P. Salomonsson, M. Oldenburg, P. Åkerström, and G. Bergman: in Proceedings of the 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, October 22–24, 2008, Kassel, Germany, K. Steinhoff, M. Oldenburg, and B. Parkash, eds., pp. 267–74.

  19. P. Salomonsson and M. Oldenburg: in Proceedings of the 2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Luleå, Sweden, June 15–17, 2009, M. Oldenburg, K. Steinhoff, and B. Parkash, eds., pp. 239–46.

  20. J.V. Beck, B. Blackwell, and C.R. St. Clair, Jr.: Inverse Heat Conduction: Ill-posed Problems, pp. 108-61, Wiley, New York, NY, 1985.

    Google Scholar 

  21. P. Bosetti, S. Bruschi, T. Stoehr, J. Lechler, and M. Merklein, Int. J. Mater. Form., 2010 vol. 3, suppl. 1, pp. 817–20.

    Article  Google Scholar 

  22. B. Abdul Hay, B. Bourouga, and C. Dessain: Int. J. Mater. Form., 2010, vol. 3, no. 3, pp. 147-63.

    Article  Google Scholar 

  23. B. Abdulhay, B. Bourouga, and C. Dessain (2011) Applied Thermal Engineering 31:674-85.

    Article  CAS  Google Scholar 

  24. T.N. Çetinkale and M. Fishenden: Proceedings of International Conference of Heat Transfer, London, England, 1951, Institute of Mechanical Engineers, pp. 271–75.

  25. M.G. Cooper, B.B. Mikić, and M.M. Yovanovich, International Journal of Heat and Mass Transfer, 1969, vol. 12, pp. 279-300.

    Article  Google Scholar 

  26. M.M. Yovanovich, J. DeVaal, and A.H. Hegazy: Proceedings of the AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, June 7–11, 1982, AIAA Paper 82-0888.

  27. A. Bejan and A.D. Kraus (2003) Heat Transfer Handbook, vol 1. John Wiley & Sons, Hoboken, NJ, pp. 261-393

    Google Scholar 

  28. ASM Handbook, vol. 1, Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, Materials Park, OH, 1990, pp. 195–99.

  29. C.V. Madhusudana: Thermal Contact Conductance, pp. 45-63, Springer-Verlag, New York, 1996.

    Google Scholar 

  30. S. Song, M.M. Yovanovich, and F.O. Goodman (1993). J. Heat Transfer 115:533–40.

    Article  CAS  Google Scholar 

  31. S. Song and M.M. Yovanovich (1987) ASME HTD 69:107-16.

    Google Scholar 

  32. A.C. Rapier, T.M. Jones, and J.E. McIntosh: Int. J. Heat Mass Transf., 1963, vol. 6, pp. 397-416.

    Article  CAS  Google Scholar 

  33. D.P. Koistinen and R.E. Marburger, Acta Metallurgica, 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  34. E. Caron, M.A. Wells, and D. Li: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 475–83.

    Article  CAS  Google Scholar 

  35. G.A. Franco, E. Caron, and M.A. Wells: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 949–56.

    Article  CAS  Google Scholar 

  36. T.K. Blanchat, L.L. Humphries, and W. Gill, SAND2000-1111, Sandia National Laboratories, Albuquerque, NM, 2000.

    Google Scholar 

  37. K.A. Woodbury, International Journal of Heat and Mass Transfer, 1990, vol. 33, no. 12, pp. 2641-9.

    Article  CAS  Google Scholar 

  38. C.D. Henning and R. Parker, Journal of Heat Transfer, 1967, vol. 87, no. 2, pp. 146-52.

    Article  Google Scholar 

  39. B. Bourouga, V. Goizet, and J.-P. Bardon, Int. J. Therm. Sci., 2000, vol. 39, pp. 96–109.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor M.M. Yovanovich of the University of Waterloo for his assistance with the thermal contact conductance models and Professor R. Liu of Carleton University for her help with the high temperature microhardness measurements. The authors also acknowledge the support of Honda R&D Americas, Cosma International and the Promatek Research Centre, ArcelorMittal, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Initiative for Automotive and Manufacturing Innovation (IAMI) program of the Ontario Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Caron.

Additional information

Manuscript submitted September 5, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, E., Daun, K.J. & Wells, M.A. Experimental Characterization of Heat Transfer Coefficients During Hot Forming Die Quenching of Boron Steel. Metall Mater Trans B 44, 332–343 (2013). https://doi.org/10.1007/s11663-012-9772-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9772-x

Keywords

Navigation