Skip to main content
Log in

A numerical study of oxidation behavior during reactive atomization and deposition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxidation behavior of droplets during reactive atomization and deposition (RAD) is analyzed on the basis of a numerical framework proposed here. Commercial 5083 Al is chosen as a model material; moreover, in the numerical model, nonspherical droplets are approximated as cylinders with a length/diameter ratio of 3. An equation that represents the growth rate of the oxide phases, together with models that describe the dynamic and thermal behavior of droplets, is implemented in an effort to elucidate the oxidation behavior of individual droplets. The numerical results reveal that the oxidation rate of a droplet is extremely high and that the oxide phase grows very rapidly initially, eventually attaining a steady state of limited oxide growth. The overall volume fraction of oxide phases in the RAD material increases with increasing atomization pressure, superheat temperature, and O2 concentration, whereas it decreases with increasing melt flow rate. The oxygen concentrations in the RAD powders and deposited materials predicted on the basis of numerical analysis are in good agreement with the results from chemical analysis when O2 concentration is lower than 16 vol pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Lavernia and Y. Wu: Spray Atomization and Deposition, John Wiley & Sons Inc., New York, NY, 1996, pp. 7–9, 278–79, and 398–99.

    Google Scholar 

  2. P.S. Grant: Progr. Mater. Sci., 1995, vol. 39, pp. 497–545.

    Article  CAS  Google Scholar 

  3. S.L. Dai, J.P. Delplanque, and E.J. Lavernia: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2597–2611.

    Article  CAS  Google Scholar 

  4. H. Liu, R.H. Rangel, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42, pp. 3277–89.

    Article  CAS  Google Scholar 

  5. X. Zeng, H. Liu, M. Chu, and E.J. Lavernia: Metall. Trans. A, 1992, vol. 23A, pp. 3394–99.

    CAS  Google Scholar 

  6. J.P. Delplanque, E.J. Lavernia, and R.H. Rangel: Trans. ASME: J. Heat Transfer, 2000, vol. 122, pp. 126–33.

    Article  CAS  Google Scholar 

  7. H. Liu, X, Zeng, and E.J. Lavernia: Scripta Metall. Mater., 1993, vol. 29, pp. 1341–43.

    Article  CAS  Google Scholar 

  8. M.J. Dignam, W.R. Fawcett, and H. Bohni: J. Electrochem. Soc., 1966, vol. 113, pp. 656–62.

    Article  CAS  Google Scholar 

  9. P.S. Grant, B. Cantor, and L. Katgerman: Acta Metall. Mater., 1993, vol. 41, pp. 3097–3108.

    Article  CAS  Google Scholar 

  10. E.S. Lee and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231–43.

    Article  CAS  Google Scholar 

  11. W.D. Cai and E.J. Lavernia: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1085–96.

    Article  CAS  Google Scholar 

  12. Q.Q. Lu, J.R. Fontaine, and G. Aubertin: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 79–87.

    Article  CAS  Google Scholar 

  13. G.H. Ganser: Powder Technol., 1993, vol. 77, pp. 143–52.

    Article  CAS  Google Scholar 

  14. T.J. Carney, P. Tsakiropoulos, J.F. Watts, and J.E. Castle: Int. J. Rapid Solidification, 1990, vol. 5, pp. 189–217.

    CAS  Google Scholar 

  15. Y.W. Kim, W.M. Griffith, and F.H. Froes: JOM, 1985, vol. 37, pp. 27–33.

    CAS  Google Scholar 

  16. M.C. Garcia-Alonso, J.L. Gonzalez-Carrasco, M.L. Escudero, and J. Chao: J. Oxid. Met., 2000, vol. 53, pp. 77–98.

    Article  CAS  Google Scholar 

  17. C. Mennicke, E. Schumann, M. Ruhle, R.J. Hussey, G.I. Sproule, and M.J. Graham: Oxid. Met., 1998, vol. 49, pp. 455–466.

    Article  CAS  Google Scholar 

  18. H. Buscail, C. Courty, M.F. Stroosnijder, Y.P. Jacob, and J.P. Larpin: Oxid. Met., 1998, vol. 49, pp. 561–581.

    Article  CAS  Google Scholar 

  19. W.E. Ranz and W.R. Marshall: Chem. Eng. Progr., 1952, vol. 48, pp. 141–46 and pp. 173–80.

    CAS  Google Scholar 

  20. X. Liang and E.J. Lavernia: Mater. Sci. Eng. A, 1993, vol. 161A, pp. 221–35.

    Google Scholar 

  21. K. Lubanska: JOM, 1970, vol. 22, pp. 45–49.

    CAS  Google Scholar 

  22. A. Lawley: Atomization: The Production of Metal Powders, MPIF, Princeton, NJ, 1992, p. 74.

    Google Scholar 

  23. E.J. Lavernia, T.S. Srivatsan, and R.H. Rangel: Atomization Sprays, 1992, vol. 2, pp. 253–74.

    CAS  Google Scholar 

  24. A. Unal: Metall. Trans. B, 1989, vol. 20B, pp. 61–69.

    CAS  Google Scholar 

  25. E.L. Crow and K. Shimizu: Lognormal Distributions: Theory and Applications, Marcel Dekker, New York, NY, 1988, p. 2.

    Google Scholar 

  26. J.E. Smith and M.L. Jordan: J. Coll. Sci., 1964, vol. 19, pp. 549–59.

    Article  Google Scholar 

  27. A.H. Lefebvre: Atomizations Spray, Taylor & Francis, Bristol, PA, 1989, p. 85.

    Google Scholar 

  28. A.J. Yule and J.J. Dunkley: Atomization of Melts for Powder Production and Spray Deposition, Clarendon Press, Oxford, United Kingdom, 1994, p. 63.

    Google Scholar 

  29. N. Dombrowski and W.R. Johns: Chem. Eng. Sci., 1963, vol. 18, pp. 203–14.

    Article  CAS  Google Scholar 

  30. Y.J. Lin, Y. Zhou, and E.J. Lavernia: in Powder Materials: Current Research and Industrial Practices, F.D. Marquis, S. Thadhani, and N. Barrera, eds., TMS, Warrendale, PA, 2001, pp. 41–57.

    Google Scholar 

  31. J. Szekely and N.J. Themelis: Rate Phenomena in Process Metallurgy, Wiley-Interscience, New York, NY, 1971, p. 134.

    Google Scholar 

  32. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994.

    Google Scholar 

  33. Y.J. Lin, Y. Zhou, and E.J. Lavernia: J. Mater. Res., 2004, vol. 19, in press.

  34. Y.J. Lin, Y. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, in press.

  35. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, Butterworths-Heinemann, Oxford, United Kingdom, 1992, sections 8 and 14.

    Google Scholar 

  36. J.R. Davis: Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Materials Park, OH, 1993, p. 676.

    Google Scholar 

  37. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 1–3542.

    Google Scholar 

  38. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, p. 294.

    Google Scholar 

  39. C.L. Yaws: Handbook of Viscosity, Gulf Publishing Co., Houston, TX, 1997, vol. 4. p. 356.

    Google Scholar 

  40. C.L. Laws: Handbook of Thermal Conductivity, Gulf Publishing Co., Houston, TX, 1997, vol. 4, p. 356.

    Google Scholar 

  41. D.R. Lide: CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL, 1992, section 5.

    Google Scholar 

  42. L.G. Berry, B. Post, S. Weissmann, and H.F. McMurdie: Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Philadelphia, PA, 1963, pp. 581 and 680.

    Google Scholar 

  43. G.V. Samsonov: Oxide Handbook, C.N. Turton and T.I. Turton TI, translators, IFI/Plenum Data Corporation, New York, NY, 1973, pp. 170 and 315.

    Google Scholar 

  44. Y. Zhou, S. Lee, V. McDonell, S. Samuelsen, R. Kozarek, and E.J. Lavernia: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 793–806.

    CAS  Google Scholar 

  45. S.L. Dai, J.P. Delplanque, and E.J. Lavernia: J. Mater. Res., 1999, vol. 14, pp. 2814–23.

    CAS  Google Scholar 

  46. Y.J. Lin, Y. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3251–63.

    Article  CAS  Google Scholar 

  47. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1995, pp. 304–307.

    Google Scholar 

  48. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amsterdam, 1971, pp. 9–135.

    Google Scholar 

  49. Y. Ji, X. Gao, and T. Zhong: J. Mater. Eng. Performance, 1999, vol. 8, pp. 168–70.

    Article  CAS  Google Scholar 

  50. T.B. Grimley and B.M.W. Trapnell: Proc. R. Soc. A, 1956, vol. 234, pp. 405–18.

    Google Scholar 

  51. I.M. Ritchie and G.L. Hunt: Surf. Sci., 1969, vol. 15, pp. 524–34.

    Article  CAS  Google Scholar 

  52. T.B. Grimley: in Chemistry of the Solid State, W.E. Garner, ed., Butterworth and Co., London, 1995, ch. 14.

    Google Scholar 

  53. W.C. Sleppy: J. Electrochem. Soc., 1961, vol. 108, pp. 1097–1102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Zhou, Y. & Lavernia, E.J. A numerical study of oxidation behavior during reactive atomization and deposition. Metall Mater Trans B 35, 1173–1185 (2004). https://doi.org/10.1007/s11663-004-0072-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0072-y

Keywords

Navigation