Skip to main content
Log in

Kinetics of Extracting Magnesium from Dolomite by Aluminothermic Process in Flowing Argon

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Due to its low reaction temperature, fast reaction efficiency and other advantages, the aluminothermic process is the most likely to replace the Pidgeon process, but its industrial application is limited because of its high smelting cost. To reduce the production cost and realize the continuous production of magnesium by aluminothermic process, in this work, a new method of extracting magnesium by aluminothermic process in flowing argon was proposed, and the effects of carrier gas flow, briquetting pressure, and calcium fluoride content on the reduction rate and reduction reaction kinetics were investigated. The results showed that a small amount of argon flow could make the reaction proceed quickly, too large carrier gas flow and briquetting pressure were not conducive to the reduction reaction, and the increase in calcium fluoride content could speed up the reaction. When the carrier gas flow was 0.2 m3·h−1, the briquetting pressure was 15 MPa, and the reduction time was 2 h at 1473 K, the reduction rate of magnesium oxide reached > 89%. The phase formed in the reduction slag was mainly the 12CaO·7Al2O3 phase. The control step of the reduction reaction was the diffusion reaction, and its apparent activation energy was 104.42 kJ·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Wang, Y. Yuan, T. Chen, L. Wu, X.H. Chen, B. Jiang, J.F. Wang, and F.S. Pan, J. Magnes. Alloys 10, 1786 https://doi.org/10.1016/j.jma.2022.06.015 (2022).

    Article  Google Scholar 

  2. D. Guan, W.M. Rainforth, J. Gao, M. Le, and B. Wynne, Acta. Mater. 145, 399 https://doi.org/10.1016/j.actamat.2017.12.019 (2018).

    Article  Google Scholar 

  3. A. Maqbool, N.Z. Khan, and A.N. Siddiquee, J. Manuf. Sci. Eng. Mar. 144, 030801 https://doi.org/10.1115/1.4051678 (2022).

    Article  Google Scholar 

  4. F. Iranshahi, M.B. Nasiri, F.G. Warchomicka, and C. Sommitsch, J. Magnes. Alloys 10, 707 https://doi.org/10.1016/j.jma.2021.08.016 (2022).

    Article  Google Scholar 

  5. T. Kurzynowski, A. Pawlak, and I. Smolina, Arch. Civ. Mech. Eng. 20, 23 https://doi.org/10.1007/s43452-020-00033-1 (2020).

    Article  Google Scholar 

  6. D.D. Zhang, F. Peng, and X.Y. Liu, J. Alloys Compd. 853, 157010 https://doi.org/10.1016/j.jallcom.2020.157010 (2021).

    Article  Google Scholar 

  7. Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, and Y.F. Zheng, J. Magnes. Alloys 8, 42 https://doi.org/10.1016/j.jma.2019.09.008 (2020).

    Article  Google Scholar 

  8. H.J. Jeoung, Y. Kim, T.H. Lee, Y.M. Kim, K.W. Yi, and J. Kang, J. Appl. Electrochem. 52, 1535 https://doi.org/10.1007/s10800-022-01725-7 (2022).

    Article  Google Scholar 

  9. Y. Tian, L.P. Wang, B. Yang, Y.N. Dai, B.Q. Xu, F. Wang, and N. Xiong, J. Magnes. Alloys 10, 697 https://doi.org/10.1016/j.jma.2020.09.024 (2022).

    Article  Google Scholar 

  10. Y.W. Wang, Y.Z. Di, J. You, and J.P. Peng, Vacuum 59, 64 https://doi.org/10.13385/j.cnki.vacuum.2022.04.12 (2022).

    Article  Google Scholar 

  11. J.B. Han, D.X. Fu, J.H. Guo, Z.H. Ji, and T.A. Zhang, Metals 10, 1441 https://doi.org/10.3390/met10111441 (2020).

    Article  Google Scholar 

  12. M. Abdellatif, and J.S. Afr, Inst. Min. Metall. 111, 393 (2011).

    Google Scholar 

  13. C. Zhang, C. Wang, S. Zhang, and L. Guo, Ind. Eng. Chem. Res. 54, 8883 https://doi.org/10.1021/acs.iecr.5b01830 (2015).

    Article  Google Scholar 

  14. D.X. Fu, T.A. Zhang, Z.H. Dou, and L.K. Guan, Can. Metall. Quart. 56, 418 https://doi.org/10.1080/00084433.2017.1361178 (2017).

    Article  Google Scholar 

  15. Y. Wada, S. Fujii, E. Suzuki, M.M. Maitani, S. Tsubaki, S. Chonan, M. Fukui, and N. Inazu, Sci. Rep. 7, 46512 https://doi.org/10.1038/srep46512 (2017).

    Article  Google Scholar 

  16. N. Xiong, Y. Tian, D. Yang, B.Q. Xu, T. Dai, and Y.N. Dai, Vacuum 160, 213 https://doi.org/10.1016/j.vacuum.2018.11.007 (2019).

    Article  Google Scholar 

  17. D.X. Fu, N.X. Feng, Y.W. Wang, J.P. Peng, Y.Z. Di, and T. Nonferr, Metal. Soc. 24, 839 https://doi.org/10.1016/S1003-6326(14)63133-2 (2014).

    Article  Google Scholar 

  18. T. Zhang, S.M. Du, W.C. Sun, J.M. Zhang, L.B. Nie, B. Zhang, and X.H. Hua, Metall. Mater. Trans. B 48B, 488 https://doi.org/10.1007/s11663-016-0821-8 (2017).

    Article  Google Scholar 

  19. Y.Z. Di, Z.H. Wang, Y.W. Wang, J.P. Peng, and N.X. Feng, Ciesc. J. 64, 1106 https://doi.org/10.3969/j.issn.0438-1157.2013.03.045 (2013).

    Article  Google Scholar 

  20. T. A. Zhang, Z. H. Dou, Z. M. Zhang, Y Liu, G. Z. Lv, J. C. He, CN Patent CN104120282A (2014). http://www.soopat.com/Patent/201410345802

  21. D.X. Fu, Y.W. Wang, J.P. Peng, Y.Z. Di, S.H. Tao, N.X. Feng, and T. Nonferr, Metal. Soc. 24, 2677 https://doi.org/10.1016/S1003-6326(14)63398-7 (2014).

    Article  Google Scholar 

  22. Y.W. Wang, J. You, J.P. Peng, and Y.Z. Di, JOM 68, 1728 https://doi.org/10.1007/s11837-016-1865-6 (2016).

    Article  Google Scholar 

  23. Y.S. Che, G.P. Mai, S.J. Zhang, J.L. He, J.X. Song, J.H. Yi, and T. Nonferr, Metal. Soc. 30, 2812 https://doi.org/10.1016/S1003-6326(20)65423-1 (2020).

    Article  Google Scholar 

  24. J. Du, W. Han, and Y. Peng, J. Clean. Prod. 18, 112 https://doi.org/10.1016/j.jclepro.2009.08.013 (2010).

    Article  Google Scholar 

  25. Y. Wang, J. You, N. Feng, and W. Hu, Chin. J. Vac. Sci. Technol. 32, 889 https://doi.org/10.3969/j.issn.1672-7126.2012.10.07 (2012).

    Article  Google Scholar 

  26. J. Yang, M. Kuwabara, T. Sawada, and M. Sano, ISIJ Int. 46, 1130 https://doi.org/10.2355/isijinternational.46.1130 (2006).

    Article  Google Scholar 

  27. J. Yang, M. Kuwabara, Z. Liu, T. Asano, and M. Sano, ISIJ Int. 46, 202 https://doi.org/10.2355/isijinternational.46.202 (2006).

    Article  Google Scholar 

  28. J.H. Guo, X. Li, T.A. Zhang, J.B. Han, J.Y. Geng, and Y.S. Wang, J. Sustain. Matall. 8, 1756 https://doi.org/10.1007/s40831-022-00604-x (2022).

    Article  Google Scholar 

  29. Y.Q. Chen, G.P. Mai, Y.S. Che, and J.L. He, Materials 15, 6009 https://doi.org/10.3390/ma15176009 (2022).

    Article  Google Scholar 

  30. I.M. Morsi, K.A. Eibarawy, M.B. Morsi, and S.R. Abdelgawad, Can. Metall. Quart. 41, 15 https://doi.org/10.1179/cmq.2002.41.1.15 (2002).

    Article  Google Scholar 

  31. W. Wulandari, G.A. Brooks, M.A. Rhamdhani, and B.J. Monaghan, Can. Metall. Quart. 53, 17 https://doi.org/10.1179/1879139513Y.0000000096 (2014).

    Article  Google Scholar 

  32. S.K. Barua, and J.R. Wynnyckyi, Can. Metall. Quart. 20, 295 https://doi.org/10.1179/cmq.1981.20.3.295 (1981).

    Article  Google Scholar 

  33. J.H. Guo, D.X. Fu, J.B. Han, Z.H. Ji, and T.A. Zhang, J. Min. Metall. B 56, 379 https://doi.org/10.2298/JMMB200712031G (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants (U1508217; 51504058) and the Fundamental Research Funds for the Central Universities of China (N162504003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting’an Zhang.

Ethics declarations

Confict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 329 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, X., Han, J. et al. Kinetics of Extracting Magnesium from Dolomite by Aluminothermic Process in Flowing Argon. JOM 75, 2614–2625 (2023). https://doi.org/10.1007/s11837-023-05818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05818-2

Navigation