Skip to main content
Log in

Bubble formation and evolution behavior from vertical wall orifice

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Bubble formation is an integral part of the two-phase flow science. Through numerical simulation and experiments using different air flow rates and orifice diameters, the present study aims at investigating the behavior of bubble formation and evolution from vertical wall orifice in quiescent pure water. For the experiments, the images of the bubble formation process under different working conditions were recorded using a high-speed camera and analyzed the entire process. The bubble formation process can be divided into three stages, namely nucleation, stable growth, and necking. According to the obtained results, bubble forms only when the air-phase pressure exceeds the threshold pressure at wall orifice. Due to the influence of the threshold pressure and buoyancy, the bubble volume decreases with an increase in the wall orifice diameter for the same flow rate. Moreover, the volume of fluid method is applied to simulate bubble formation in a three-dimensional model and the “buffer volume” is considered in the simulation model. The simulation results matched well with the experimental data, which proves the existence of threshold pressure and the periodic pressure fluctuation at the wall orifice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Robertson, MSRE design and operation report I, ORNL-0728. (U.S. Atomic Energy Commission, 1965), pp. 205–243

  2. W.C. Tang, C.Q. Yan, L.C. Sun et al., Characteristic of bubble breakup in venture-type bubble generator. Atomic Engergy Sci. Technol. 48(5), 843–847 (2014). https://doi.org/10.7538/yzk.2014.48.05.0844. (in Chinese)

    Article  Google Scholar 

  3. X.F. Ju, L.C. Sun, W.C. Tang et al., Analysis of the operating characteristics of a Venturi-type bubble generator for MSR. Nucl. Tech. 37(12), 120605 (2014). https://doi.org/10.11889/j.0253-3219.2014.hjs.37.120605. (in Chinese)

    Article  Google Scholar 

  4. N. Kantarci, F. Borak, K.O. Ulgen, Bubble column reactors. Process Biochem. 40, 2263–2283 (2005). https://doi.org/10.1016/j.procbio.2004.10.004

    Article  Google Scholar 

  5. N. Yang, J.H. Chen, H. Zhao et al., Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem. Eng. Sci. 62, 6978–6991 (2007). https://doi.org/10.1016/j.ces.2007.08.034

    Article  Google Scholar 

  6. G.Q. Yang, B. Du, L.S. Fan, Bubble formation and dynamics in gas-liquid-solid fluidization—a review. Chem. Eng. Sci. 62, 2–27 (2007). https://doi.org/10.1016/j.ces.2006.08.021

    Article  Google Scholar 

  7. N. Yang, Z.Y. Wu, J.H. Chen et al., Multi-scale analysis of gas–liquid interaction and CFD simulation of gas-liquid flow in bubble columns. Chem. Eng. Sci. 66, 3212–3222 (2011). https://doi.org/10.1016/j.ces.2011.02.029

    Article  Google Scholar 

  8. M. Pourtousi, J. Sahu, P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column. Chem. Eng. Process. Process Intensif. 75, 38–47 (2014). https://doi.org/10.1016/j.cep.2013.11.001

    Article  Google Scholar 

  9. M. Pourtousi, J. Sahu, P. Ganesan, S. Shamshirband et al., A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics. Powder Technol. 274, 466–481 (2015). https://doi.org/10.1016/j.poetec.2015.01.038

    Article  Google Scholar 

  10. G.H. Yeoh, J. Tu, Computational Techniques for Multiphase (Butterworth-Heinemann, London, 2010), pp. 351–353

    Book  Google Scholar 

  11. M. Pourtousi, P. Ganesan, A. Kazemzadeh et al., Methane bubble formation and dynamics in a rectangular bubble column: a CFD study. Chemometr. Intell. Lab. Syst. 147, 111–120 (2015). https://doi.org/10.1016/j.chemolab.2015.08.003

    Article  Google Scholar 

  12. M. Jamialahmadi, M.R. Zehtaban, H. Müller-Steinhagen et al., Study of bubble formation under constant flow conditions. Chem. Eng. Res. Des. 79, 523–532 (2001). https://doi.org/10.1205/02638760152424299

    Article  Google Scholar 

  13. X. Zhu, Q. Liao, H. Wang et al., Experimental Study of bubble growth and departure at the tip of capillary tubes with various wettabilities in a stagnant liquid. J. Supercond. Novel Magn. 23(6), 1141–1145 (2010). https://doi.org/10.1007/s10948-010-0723-y

    Article  Google Scholar 

  14. L. Zhang, M. Shoji, Aperiodic bubble formation from a submerged orifice. Chem. Eng. Sci. 56(18), 5371–5381 (2001). https://doi.org/10.1016/S0009-2509(01)00241-X

    Article  Google Scholar 

  15. V.V. Buwa, D. Derlach, F. Durst et al., Numerical simulation of bubble formation on submerged orifice: period-1 and period-2 bubbling regimes. Chem. Eng. Sci. 62(24), 7119–7132 (2007). https://doi.org/10.1016/j.ces.2007.08.061

    Article  Google Scholar 

  16. A. Bhunia, S.C. Pais, Y. Kamotan et al., Bubble formation in a coflow normal and reduced configuration in gravity. AIChE J. 44(7), 1499–1509 (1998). https://doi.org/10.1002/aic.690440704

    Article  Google Scholar 

  17. H.K. Nahra, Y. Kamotani, Bubble formation from wall orifice in liquid cross-flow under low gravity. Chem. Eng. Sci. 55, 4653–4665 (2000). https://doi.org/10.1016/S0009-2509(00)00102-0

    Article  Google Scholar 

  18. H.K. Nahra, Y. Kamotani, Prediction of bubble diameter at detachment from a wall orifice in liquid cross-flow under reduced and normal gravity conditions. Chem. Eng. Sci. 58, 55–69 (2003). https://doi.org/10.1016/S0009-2509(02)00516-X

    Article  Google Scholar 

  19. I. Chakraborty, G. Biswas, P.S. Ghoshdastidar, A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int. J. Heat Mass Transfer. 58, 240–259 (2013). https://doi.org/10.1016//j.ijheatmasstransfer.2012.02.053

    Article  Google Scholar 

  20. J. Xie, X. Zhu, Q. Liao et al., Dynamics of bubble formation and detachment from an immersed micro-orifice on a plate. Int. J. Heat Mass Transfer. 55, 3205–3213 (2012). https://doi.org/10.1016//j.ijheatmasstransfer.2012.11.027

    Article  Google Scholar 

  21. J. Zhang, Y. Yu, C. Qu et al., Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate. Chem. Eng. Sci. 168, 1–10 (2017). https://doi.org/10.1016/j.ces.2017.04.012

    Article  Google Scholar 

  22. Y.J. Zhang, M.Y. Liu, Y.G. Xu et al., Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns. Chem. Eng. Sci. 73, 55–78 (2012). https://doi.org/10.1016/j.ces.2012.01.012

    Article  Google Scholar 

  23. K. Mukundakrishnan, S. Quan, D.M. Eckmann et al., Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. Phys. Rev. E 76, 036308–01–15 (2007). https://doi.org/10.1103/PhysRevE.76.036308

    Article  Google Scholar 

  24. K.Y. Zhang, Y.Q. Feng, P. Schwarz et al., Computational fluid dynamics (CFD) modeling of bubble dynamics in the aluminum smelting process. Ind. Eng. Chem. Res. 52(33), 11378–11390 (2013). https://doi.org/10.1021/ie303464a

    Article  Google Scholar 

  25. Z.B. Zhao, Y.Q. Feng, P. Schwarz et al., Numerical modeling of flow dynamics in the aluminum smelting process: comparison between air-Water and CO2-cryolite systems. Metall. Mater. Trans. B 48, 1200–1216 (2017). https://doi.org/10.1007/s11663-016-0872-x

    Article  Google Scholar 

  26. K.B. Cai, Y.C. Song, J.J. Li et al., Pressure and velocity fluctuation in the numerical simulation of bubble detachment in a Venturi-type bubble generator. Nucl. Technol. 205, 94–103 (2018). https://doi.org/10.1080/00295450.2018.1479575

    Article  Google Scholar 

  27. D. Ma, M.Y. Liu, Y.G. Zu et al., Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chem. Eng. Sci. 72, 61–77 (2012). https://doi.org/10.1016/j.ces.2012.01.013

    Article  Google Scholar 

  28. W. Helden, C. Geld, P. Boot, Forces on bubbles growing and detaching in flow along a vertical wall. Int. J. Heat Mass Transfer. 38(11), 2075–2088 (1995). https://doi.org/10.1016/0017-9310(94)00319-Q

    Article  Google Scholar 

  29. J.F. Klausner, R. Mei, D.M. Bernhard et al., Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transfer. 36(3), 651–662 (1993). https://doi.org/10.1016/0017-9310(93)80041-r

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-Min Liu, Hua Li or Wei Liu.

Additional information

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA0202000) and the National Natural Science Foundation of China (No. 11535009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZW., Wu, XL., Zhang, Q. et al. Bubble formation and evolution behavior from vertical wall orifice. NUCL SCI TECH 30, 183 (2019). https://doi.org/10.1007/s41365-019-0709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0709-9

Keywords

Navigation