Skip to main content
Log in

Oxidation of metals with highly reactive vapors: Extension of wagner theory

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this article, a theoretical analysis of the behavior of metallic materials at high temperature in the presence of gaseous oxygen is presented. A generalized Wagner approach is presented in the limiting scenario of highly reactive vapors, Wagner’s theory being the lower limit for null reactivity. Oxygen transfer from the gas phase to the condensed phase is expressed in terms of oxygen effective pressure, accounting for the contribution of volatile oxides. The theoretical approach allows the prediction of the oxygen partial pressures in the feed gas corresponding to oxidation/deoxidation conditions. Such conditions can be different from those given by thermodynamic equilibrium by several orders of magnitude. Moreover, the actual oxygen partial pressure at the condensed phase interface can be expressed as a function of the feed-gas oxygen content, which is measurable. The theory is applicable for metals and nonmetallic materials, such as semiconductors, both in solid and liquid phase. An application to the molten silicon-oxygen system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c i :

concentration of the ith compound, mol cm−3

d d :

metal sample characteristic dimension

D :

diffusivity, cm2 s−1

f j :

function (of T and c i) in the reaction kinetics expression of the jth oxide

k :

constant common to all reaction kinetics, cm3 mol−1 s−1

K pj :

equilibrium constant for the jth reaction

K j :

dimensionless equilibrium constant for the jth reaction

K s j :

saturation product for the jth oxide, defined as P s Cj /K pj

I :

inert gas (He, Ar, ...)

n :

total number of oxides

n i :

dimensional molar flux

N i :

molar flux, mol cm2 s−1

P i :

partial pressure, atm

r i :

reaction rate of the ith compound, mol cm−3 s−1

Re d :

Reynolds number of the metal sample.

x i :

concentration of the ith chemical specie, normalized with respect to c s B

X A :

dimensionless total effective oxygen concentration

X B :

dimensionless total effective metal concentration

y :

molar fraction in the condensed phase

z :

spatial coordinate with origin at the interface and perpendicular to it, cm.

α j :

oxygen stoichiometric coefficient in the jth oxidation reaction

ζ :

dimensionless spatial coordinate with origin at the interface and perpendicular to it

δ :

diffusive layer

Φ:

Thiele modulus

Ψ:

diffusivity, normalized with respect to D A

0:

carrier gas

σ :

metal surface

s :

saturation

*:

equilibrium with the condensed phase

i :

index for all chemical species, A, B, C j

j :

index for oxides

p :

index for the oxide with minimum solubility product

eff:

effective pressure

—:

in the liquid phase

References

  1. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier Science Publishers, New York, NY, 1983.

    Google Scholar 

  2. E.T. Turkdogan, P. Grieveson, and L.S. Darken: J. Phys. Chem., 1963, vol. 67, pp. 1647–54.

    CAS  Google Scholar 

  3. C. Wagner: J. Appl. Phys., 1958, vol. 29, pp. 1295–97.

    Article  ADS  CAS  Google Scholar 

  4. K. Nogi, K. Ogino, A. McLean, and W.A. Miller: Metall. Trans. B, 1986, vol. 17B, pp. 163–70.

    CAS  Google Scholar 

  5. Z. Niu, K. Mukai, Y. Shiraishi, T. Hibiya, K. Kakimoto, and M. Koyama: Proc. Int. Conf. “High Temperature Capillarity,” N. Eustathopoulos and N. Sobczak, eds., Krakow, Poland, 1997, pp. 175–81.

  6. A. Passerone, E. Ricci, and R. Sangiorgi: J. Mater. Sci., 1990, vol. 25, pp. 4266–72.

    Article  CAS  Google Scholar 

  7. E. Ricci, A. Passerone, P. Castello, and P. Costa: J. Mater. Sci., 1994, vol. 29, pp. 1833–46.

    Article  CAS  Google Scholar 

  8. P. Castello, E. Ricci, A. Passerone, and P. Costa: J. Mater. Sci., 1994, vol. 29, pp. 6104–14.

    Article  CAS  Google Scholar 

  9. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos: Acta Metall., 1988, vol. 36, pp. 1797–1803.

    Article  CAS  Google Scholar 

  10. E. Ricci, M. Ratto, E. Arato, P. Costa, and A. Passerone: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. S139-S143.

    CAS  Google Scholar 

  11. M. Ratto, E. Ricci, and E. Arato: J. Cryst. Growth, 2000, vol. 217, pp. 233–49.

    Article  CAS  Google Scholar 

  12. E. Ricci, L. Nanni, E. Arato, and P. Costa: J. Mater. Sci., 1998, vol. 33, pp. 305–12.

    Article  CAS  Google Scholar 

  13. E. Ricci, L. Nanni, and A. Passerone: Phil. Trans. R. SoC. London, 1998, vol. A356, pp. 857–70.

    Article  ADS  Google Scholar 

  14. C. Gelain, A. Cassuto, and P. Le Goff: Oxid. Met., 1971, vol. 3, pp. 139–51.

    Article  CAS  Google Scholar 

  15. E.A. Gulbransen and S.A. Jansson: Oxid. Met., 1972, vol. 4, pp. 181–201.

    Article  CAS  Google Scholar 

  16. E.A. Gulbransen, K.F. Andrew, and F.A. Brassart: J. Electrochem. Soc., 1966, vol. 113, pp. 834–37.

    Article  CAS  Google Scholar 

  17. P.D. Agnello and T.O. Sedgwick: J. Electrochem. Soc., 1992, vol. 139, pp. 2929–34.

    Article  CAS  Google Scholar 

  18. E. Ricci, R. Novakovic, E. Arato, M. Ratto, and A. Passerone: E.L.G.R.A. News, 1999, vol. 21, p. 117.

    Google Scholar 

  19. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, Inc, New York, NY, 1960.

    Google Scholar 

  20. J.R. Engstrom, D.J. Bonser, M.M. Nelson, and T. Engel: Surface Sci., 1991, vol. 256, pp. 317–43.

    Article  CAS  Google Scholar 

  21. O.E. Kashireninov: in Gas-Phase Metal Reactions, A. Fontijn, ed., Elsevier Science Publishers, New York, NY, 1992, pp. 621–42.

    Google Scholar 

  22. B.J. Keene: Surf. Interface Analysis, 1987, vol. 10, pp. 367–83.

    Article  CAS  Google Scholar 

  23. H.J. Leamy and J.H. Wernick: MRS Bull., 1997, May, pp. 47–55.

  24. O. Knacke, O. Kubashewski, and K. Hesselmann: Thermo-Chemical Properties of Inorganic Substances, II ed., Springer-Verlag, Verlag Stahleisen mbH, Düsseldorf, 1991.

    Google Scholar 

  25. X. Huang, S. Togawa, S.-I. Chung, K. Terashima, and S. Kimura: J. Cryst. Growth, 1992, vol. 156, pp. 52–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratto, M., Ricci, E., Arato, E. et al. Oxidation of metals with highly reactive vapors: Extension of wagner theory. Metall Mater Trans B 32, 903–911 (2001). https://doi.org/10.1007/s11663-001-0076-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0076-9

Keywords

Navigation