Skip to main content
Log in

Use of microstructural statistics in predicting polycrystalline material properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experimental measurements of lattice orientation correlation in an oxygen-free electronic (OFE) copper plate have been employed in several statistical continuum mechanical theories to construct improved bounds and estimates of the plate’s macroscopic elastic response. One- and two-point microstructural statistics of lattice orientation were obtained through the automated analysis of spatially resolved electron backscatter diffraction (EBSD) patterns. Generalized Hashin-Shtrikman (GHS) bounds incorporating two-point statistical data were found to be 75 pct narrower than the Voigt-Reuss bounds. A perturbation expansion technique yielded two sets of bounds of comparable quality. An experimental acoustic measurement of the bulk elastic response of the plate was found to lie between the calculated bounds. In addition, a perturbation estimate was obtained which exceeds the measured response, but still falls within all of the calculated bounds. The influence of crystallographic texture was investigated for a variety of simulated textured copper polycrystals and was found to cause significant differences in the macroscopic elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Beran, T.A. Mason, B.L. Adams, and T. Olson: J. Mech. Phys. Solids, 1996, vol. 44, pp. 1543–63.

    Article  CAS  Google Scholar 

  2. T.A. Mason: Ph.A. Dissertation, Yale University, New Haven, CT, 1994.

    Google Scholar 

  3. J.R. Willis: in Advances in Applied Mechanics, Chia-Shun Yih, ed., Academic Press, New York, NY, 1981, vol. 21, pp. 2–78.

    Google Scholar 

  4. L.J. Walpole: in Advances in Applied Mechanics, Chia-Shun Yih, ed., Academic Press, New York, NY, 1981, vol. 21, pp. 169–242.

    Google Scholar 

  5. E. Kröner: in Modeling Small Deformations of Polycrystals, J. Gittus and J. Zarka, eds., Elsevier Applied Science Publishers, New York, NY, 1986, pp. 229–1.

    Google Scholar 

  6. Z. Hashin: J. Appl. Mech., 1983, vol. 50, pp. 481–505.

    Article  Google Scholar 

  7. M.J. Beran: Statistical Continuum Theories, John Wiley & Sons, Interscience, New York, NY, 1968.

    Google Scholar 

  8. M.J. Beran: Phys. Status Solid: 1971, vol. 6, pp. 365–84.

    Article  CAS  Google Scholar 

  9. J.P. Watt, G.F. Davies, and R.J. O’Connell: Rev. Geophys. Space Phys., 1976, vol. 14, pp. 541–63.

    CAS  Google Scholar 

  10. H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth & Co., London, 1982.

    Google Scholar 

  11. W. Voigt: Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928.

    Google Scholar 

  12. A. Reuss: Z. Angew. Math. Mech., 1929, vol. 9, pp. 49–58.

    CAS  Google Scholar 

  13. R. Hill: Proc. Phys. Soc. A, 1952, vol. A65, pp. 349–54.

    Article  Google Scholar 

  14. B. Paul: AIME Trans., 1960, vol. 218, pp. 36–41.

    CAS  Google Scholar 

  15. Z. Hashin and S. Shtrikman: J. Mech. Phys. Solids, 1962, vol. 10, pp. 335–42.

    Article  Google Scholar 

  16. Z. Hashin and S. Shtrikman: J. Mech. Phys. Solids, 1962, vol. 10, pp. 343–52.

    Article  CAS  Google Scholar 

  17. M.A. Elsayed: J. Math. Phys., 1974, vol. 15, pp. 2001–15.

    Article  Google Scholar 

  18. J.R. Willis: J. Mech. Phys. Solids, 1977, vol. 25, pp. 185–202.

    Article  Google Scholar 

  19. Yu.V. Kuzmenko, V.I. Korneev, and T.D. Shermergor: Mater. Sci. Eng., 1983, vol. 58, pp. 169–74.

    Article  CAS  Google Scholar 

  20. L.J. Walpole: J. Mech. Phys. Solids, 1966, vol. 14, pp. 151–62.

    Article  Google Scholar 

  21. T. Olson: Michigan Technological University, Haughton, Ml, unpublished research, 1994.

  22. E. Kröner: J. Mech. Phys. Solids, 1977, vol. 25, pp. 137–55.

    Article  Google Scholar 

  23. V. Thaveeprungsriporn, J.F. Mansfield, and G.S. Was: J. Mater. Res., 1994, vol. 9, pp. 1887–94.

    CAS  Google Scholar 

  24. D.J. Dingley and V. Randle: J. Mater. Sci., 1992, vol. 27, pp. 4545–66.

    Article  CAS  Google Scholar 

  25. B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  26. S.I. Wright: J. Comput. Assist. Micr., 1993, vol. 5, pp. 207–21.

    Google Scholar 

  27. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  28. H. Ledbetter, C. Fortunko, and P. Heyliger: J. Mater. Res., 1995, vol. 10, pp. 1352–53.

    CAS  Google Scholar 

  29. H. Ledbetter: NIST, Boulder, CO, private communication, 1993.

  30. E. Schreiber, O. Anderson, and N. Soga: Elastic Constants and Their Measurement, McGraw-Hill Book Co., New York, NY, 1973.

    Google Scholar 

  31. J. Maynard, M. McKenna, A. Migliori, and W. Visscher: Ultrasonics of High-Tc and Other Unconventional Superconductors, Academic, Boston, MA, 1992, p. 381.

    Google Scholar 

  32. A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, and R.G. Liesure: Phy. B, 1993, vol. 183, pp. 1–24.

    Article  CAS  Google Scholar 

  33. J.L. Bassani: Int. J. Mech. Sci., 1977, vol. 19, pp. 651–60.

    Article  Google Scholar 

  34. H.J. Bunge, R. Ebert, and F. Günther: Phys. Status Solid 1969, vol. 31, pp. 565–69.

    CAS  Google Scholar 

  35. G.J. Davies, D.J. Goodwill, and J.S. Kallend: Metall. Trans., 1972, vol. 3, pp. 1627–31.

    CAS  Google Scholar 

  36. S.I. Wright, A.D. Rollett, and M.G. Stout: Scripta Metall. Mater., 1993, vol. 28, pp. 985–90.

    Article  CAS  Google Scholar 

  37. E.A. Calnan: Acta Metall., 1954, vol. 2, pp. 865–74.

    Article  CAS  Google Scholar 

  38. I.L. Dillamore and W.J. Roberts: Acta Metall., 1964, vol. 12, pp. 281–93.

    Article  CAS  Google Scholar 

  39. J. Hirsch and J. Lücke: Acta Metall., 1988, vol. 36, pp. 2863–82 and 2883–2904.

    Article  CAS  Google Scholar 

  40. E. Kröner: Z. Phys., 1953, vol. 136, pp. 402–10.

    Article  Google Scholar 

  41. I.M. Lifshitz and L.N. Rosentsveig: Zh. Eksperim. Teor. Fiz., 1947, vol 17, pp. 783–91.

    Google Scholar 

  42. T. Mura: Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987.

    Google Scholar 

  43. R. Zeller and P.H. Dederichs: phys. Status Solid; (b), 1973, vol. 55, pp. 831–42.

    CAS  Google Scholar 

  44. T.R. Middya, M. Paul, and A.N. Basu: J. Appl. Phys., 1985, vol. 58, pp. 4095–4101.

    Article  CAS  Google Scholar 

  45. S. Sarkar, T.K. Ballabh, T.R. Middya, and A.N. Basu: Phys. Rev. B, 1996, vol. 54, pp. 3926–31.

    Article  CAS  Google Scholar 

  46. E. Kröner: J. Mech. Phys. Solids, 1967, vol. 15, pp. 319–29.

    Article  Google Scholar 

  47. E. Kröner: Micromechanics and Inhomogeneity: The Toshio Mura 65th Anniversary Volume, Springer-Verlag, New York, NY, 1990, pp. 197–211.

    Google Scholar 

  48. B.K.D. Gairola and E. Kröner: Int. J. Eng. Sci., 1981, vol. 19, pp. 865–69.

    Article  Google Scholar 

  49. L. Thomsen: J. Geophys. Res., 1972, vol. 77, pp. 315–27.

    Article  CAS  Google Scholar 

  50. D.J. Bacon, D.M. Barnett, and R.O. Scattergood: Progr. Mater. Sci., 1979, vol. 23, pp. 51–262.

    Article  Google Scholar 

  51. D.M. Barnett: Phys. Status Solid; (b), 1972, vol. 49, pp. 741–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, T.A., Adams, B.L. Use of microstructural statistics in predicting polycrystalline material properties. Metall Mater Trans A 30, 969–979 (1999). https://doi.org/10.1007/s11661-999-0150-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0150-5

Keywords

Navigation