Skip to main content
Log in

Estimates of Nonlinear Elastic Constants and Acoustic Nonlinearity Parameters for Textured Polycrystals

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this article, expressions are derived for the Voigt, Reuss, and Hill estimates of the third-order elastic constants for polycrystals with either cubic or hexagonal crystal symmetry and orthorhombic physical symmetry. General forms of the fourth- and sixth-rank elastic stiffness and compliance tensors for crystal and physical symmetries are given. Explicit expressions are reduced from these tensors for the case of polycrystals exhibiting orthorhombic sample symmetry with either cubic or hexagonal crystallites. The estimated third-order elastic constants of the textured polycrystal are obtained in terms of second- and third-order single-crystal elastic constants and orientation distribution coefficients (ODCs), which are used to account for anisotropic physical symmetry. The acoustic nonlinearity parameter, \(\bar{\beta}\), is defined through combinations of the second- and third-order Voigt, Reuss, and Hill estimates of the elastic constants for a textured polycrystal. The model predicts that \(\bar{\beta}\) is dependent on the type of averaging scheme used and the texture-defining ODCs. The model is quantitatively evaluated for polycrystalline iron, aluminum, and titanium using second- and third-order single-crystal elastic constants and experimentally measured ODCs. The interrelation between \(\bar{\beta}\) and polycrystalline anisotropy offers potential for techniques associated with quantitative texture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The Voigt estimate assumes a far-field strain on a polycrystal is uniform and constant so that the strain within an individual crystallite is equal to the far-field strain. Similarly, the Reuss estimate is based on the analogous equivalence of stress.

  2. Indices take on the values 1, 2, and 3. Summation convention for each repeated index is assumed.

  3. This orientation distribution function follows the convention first proposed by Roe [51]. At the time, Roe’s ODF was developed with the assumption that X-ray pole figures contained all information pertinent to the ODF. Thus, Roe applied the symmetry properties of the X-ray diffraction data to the ODF [51]. However, the true ODF is divorced from the properties of experimental techniques. An error, which stemmed from using Roe’s formalism [51], was the assumption that \(W_{lmn}=0\) for all odd values of \(l\). This assumption was proven erroneous by Matthies [52]. The present formalism mathematically defines the ODF on the rotation group SO(3), which is divorced from dependence on experimental diffraction data. For the present calculations, which consider the second- and third-order elastic constants of cubic and hexagonal crystallites, we let \(W_{1mn}=W_{3mn}=W_{5mn}=0\). If the general expressions of the sixth-rank elastic tensors were evaluated for triclinic symmetry, as done by Morris [20] for SOECs, some odd coefficients of \(W_{lmn}\) will be nonzero. Furthermore, many crystallite point groups are not members of SO(3), whereas all 32 point groups are members of O(3) of which SO(3) is a subgroup. A recent dissertation has considered an ODF defined on the orthogonal group O(3) [53]. This dissertation also considers the proper symmetry restrictions, manifest from the sample and crystallite symmetries, that can be placed on the ODF [53]. The numerical results given in Sect. 5 for cubic and hexagonal crystallites are observed to be equal to the results one would obtain if the ODF was defined on O(3) [53, 54].

  4. Appendix B provides the simplification on the ODF that is needed to reproduce the numerical results given in this article. Some symmetry relations given in Appendix B may need to be removed while other symmetry restrictions may need to be added if the crystallites belong to Laue groups other than CI and HI and the sample symmetry is other than Laue group O.

  5. A common configuration consists of a transmitting and listening transducer pair. The transmitting transducer generates a finite amplitude wave with frequency \(\omega\), while the second transducer listens for a signal containing the frequencies \(\omega\) and \(2\omega\). The frequency spectrum of the received signal contain well-defined Gaussian indications at \(\omega\) and \(2\omega\). The amplitude ratio of the indications give a measure of \(\beta\) from (32). For brevity, (32) neglects attenuation and diffraction effects, which are commonly needed when measuring \(\beta\). Matlack et al. [40] gives expressions for \(\beta\) with attenuation and diffraction corrections.

References

  1. Seeger, A., Buck, O.: Die experimentelle ermittlung der elastischen konstanten höherer ordnung. Z. Naturforsch. 15a, 1056–1067 (1960)

    ADS  Google Scholar 

  2. Bateman, T., Mason, W.P., McSkimin, H.J.: Third-order elastic moduli of germanium. J. Appl. Phys. 32, 928–936 (1961)

    Article  ADS  Google Scholar 

  3. Hughes, D.S., Kelly, J.L.: Second-order elastic deformation of solids. Phys. Rev. 92, 1145–1149 (1953)

    Article  ADS  MATH  Google Scholar 

  4. Watt, J.P., Davies, G.F., O’Connell, R.J.: The elastic properties of composite materials. Rev. Geophys. Space Phys. 14, 541–563 (1976)

    Article  ADS  Google Scholar 

  5. Kröner, E.: Statistical modeling. In: Gittus, J., Zarka, J. (eds.) Modelling Small Deformations of Polycrystals, pp. 229–291. Elsevier, New York (1986)

    Chapter  Google Scholar 

  6. Hirsekorn, S.: Elastic properties of polycrystals: a review. Textures Microstruct. 12, 1–14 (1990)

    Article  Google Scholar 

  7. Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. K. Ges. Wiss. Gött. 34, 3–51 (1887)

    Google Scholar 

  8. Reuss, A.: Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedinggung für Einkristalle. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Article  MATH  Google Scholar 

  9. Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  10. Morris, P.R.: Averaging fourth-rank tensors with weight functions. J. Appl. Phys. 40, 447–448 (1969)

    Article  ADS  Google Scholar 

  11. Morris, P.R., Heckler, A.J.: Crystallite orientation analysis for rolled hexagonal materials. Trans. Metall. Soc. AIME 245, 1877–1881 (1969)

    Google Scholar 

  12. Morris, P.R.: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49–61 (1970)

    Article  Google Scholar 

  13. Hirao, M., Aoki, K., Fukuoka, H.: Texture of polycrystalline metals characterized by ultrasonic velocity measurements. J. Acoust. Soc. Am. 81, 1434–1440 (1987)

    Article  ADS  Google Scholar 

  14. Sayers, C.M.: Angular dependent ultrasonic wave velocities in aggregates of hexagonal crystals. Ultrasonics 24, 289–291 (1986)

    Article  Google Scholar 

  15. Li, Y., Thompson, R.B.: Relations between elastic constants \(C_{ij}\) and texture parameters for hexagonal materials. J. Appl. Phys. 67, 2663–2665 (1990)

    Article  ADS  Google Scholar 

  16. Man, C.-S.: On the constitutive equations of some weakly-textured materials. Arch. Ration. Mech. Anal. 143, 77–103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paroni, R.: Homogenization of polycrystalline aggregates. Arch. Ration. Mech. Anal. 151, 311–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Anastassakis, E., Siakavellas, M.: Elastic properties of textured diamond and silicon. J. Appl. Phys. 90, 144–152 (2001)

    Article  ADS  Google Scholar 

  19. Huang, M.: Elastic constants of a polycrystal with an orthorhombic texture. Mech. Mater. 36, 623–632 (2004)

    Article  Google Scholar 

  20. Morris, P.R.: Polycrystal elastic constants for triclinic crystal and physical symmetry. J. Appl. Crystallogr. 39, 502–508 (2006)

    Article  Google Scholar 

  21. Huang, M., Man, C.-S.: Explicit bounds of effective stiffness tensors for textured aggregates of cubic crystallites. Math. Mech. Solids 13, 408–430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Man, C.-S., Huang, M.: A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105, 29–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Man, C.-S., Huang, M.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. 106, 1–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, R.: Relationships between the nonlinear elastic constants of monocrystalline and polycrystalline solids of cubic symmetry. Appl. Phys. Lett. 11, 305–308 (1967)

    Article  ADS  Google Scholar 

  25. Juretschke, H.J.: Third-order elastic constants of polycrystalline media. Appl. Phys. Lett. 12, 213–214 (1968)

    Article  ADS  Google Scholar 

  26. Barsch, G.R.: Relation between third-order elastic constants of single crystals and polycrystals. J. Appl. Phys. 39, 3780–3793 (1968)

    Article  ADS  Google Scholar 

  27. Ballabh, T.K., Paul, M., Middya, T.R., Basu, A.N.: Theoretical multiple-scattering calculation of nonlinear elastic constants of disordered solids. Phys. Rev. B 45, 2761–2771 (1992)

    Article  ADS  Google Scholar 

  28. Lubarda, V.A.: New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals. J. Mech. Phys. Solids 45, 471–490 (1997)

    Article  ADS  MATH  Google Scholar 

  29. Kiewel, H., Fritsche, L., Reinert, T.: Calculations of nonlinear effective elastic constants of polycrystalline materials. J. Appl. Phys. 79, 3963–3966 (1996)

    Article  ADS  Google Scholar 

  30. Wasserbäch, W.: Third-order constants of a cubic quasi-isotropic solid. Phys. Status Solidi B 159, 689–697 (1990)

    Article  ADS  Google Scholar 

  31. Johnson, G.C.: Acoustoelastic response of polycrystalline aggregates exhibiting transverse isotropy. J. Nondestruct. Eval. 3, 1–8 (1982)

    Article  Google Scholar 

  32. Johnson, G.C., Mase, G.T.: Acoustoelasticity in transversely isotropic materials. J. Acoust. Soc. 75, 1741–1747 (1984)

    Article  ADS  Google Scholar 

  33. Johnson, G.C.: Acoustoelastic response of a polycrystalline aggregate with orthotropic texture. J. Appl. Mech. 52, 659–663 (1985)

    Article  ADS  Google Scholar 

  34. Dai, J.D.: Third-order stiffness constants of textured hexagonal crystallite aggregates with an orthotropic macroscopic symmetry. J. Appl. Phys. 75, 4716–4720 (1994)

    Article  ADS  Google Scholar 

  35. Man, C.-S.: Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals. Nondestruct. Test. Eval. 15, 191–214 (1999)

    Article  ADS  Google Scholar 

  36. Paroni, R., Man, C.-S.: Constitutive equations of elastic polycrystalline materials. Arch. Ration. Mech. Anal. 150, 153–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Man, C.-S., Paroni, R.: On the separation of stress-induced and texture-induced birefringence in acoustoelasticity. J. Elast. 45, 91–116 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paroni, R., Man, C.-S.: Two micromechanical models in acoustoelasticity: a comparative study. J. Elast. 59, 145–173 (2000)

    Article  MATH  Google Scholar 

  39. Huang, M., Zhan, H., Lin, X., Tang, H.: Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress. Acta Mech. Sin. 23, 183–198 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34, 273 (2014)

    Article  Google Scholar 

  41. Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wave slip metals. Proc. R. Soc. Lond. A 460, 757–780 (2004)

    Article  ADS  MATH  Google Scholar 

  42. Cantrell, J.H.: Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)

    Article  ADS  Google Scholar 

  43. Kim, J.-Y., Qu, J., Jacobs, L.J., Littles, J.W., Savage, M.F.: Acoustic nonlinearity parameter due to microplasticity. J. Nondestruct. Eval. 25, 28–36 (2006)

    Article  Google Scholar 

  44. Barnard, D.J.: Variation of nonlinearity parameter at low fundamental amplitudes. Appl. Phys. Lett. 74, 2447–2449 (1999)

    Article  ADS  Google Scholar 

  45. Every, A.G., McCurdy, A.K.: Second and higher order elastic constants. In: Madelung, O., Nelson, D.F. (eds.) Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, vol. 29a. Springer, Berlin (1992)

    Google Scholar 

  46. Rao, R.R., Menon, C.S.: Lattice dynamics, third-order elastic constants, and thermal expansion of titanium. Phys. Rev. B 7, 644–650 (1973)

    Article  ADS  Google Scholar 

  47. Norris, A.N.: Symmetry conditions for third order elastic moduli and implications in nonlinear wave theory. J. Elast. 25, 247–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Norris, A.N.: Finite amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, pp. 263–276. Acoustical Society of America, New York (1997)

    Google Scholar 

  49. Brugger, K.: Pure modes for elastic waves in crystals. J. Appl. Phys. 36, 759–768 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  50. Brugger, K.: Thermodynamic definition of higher order elastic coefficients. Phys. Rev. 133, A1611–A1612 (1964)

    Article  ADS  Google Scholar 

  51. Roe, R.-J.: Description of crystallite orientation in polycrystalline materials, III. General solution to pole figure inversion. J. Appl. Phys. 36, 2024–2031 (1965)

    Article  ADS  Google Scholar 

  52. Matthies, S.: On the reproducibility of the orientation distribution function of texture samples from pole figures (ghost phenomenon). Phys. Status Solidi B 92, K135–K138 (1979)

    Article  ADS  Google Scholar 

  53. Du, W.: Material tensors and pseudotensors of weakly-texture polycrystals with orientation measure defined on the orthogonal group. Theses and Dissertations-Mathematics, Paper 22 (2015)

  54. Man, C.-S.: Personal communication (2015)

  55. Thomsen, L.: Weak elastic anisotropy. Geophysics 51, 1954–1966 (1986)

    Article  ADS  Google Scholar 

  56. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Kröner, E.: Self-consistent scheme in random media elasticity—exact or only approximate? In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 5, pp. 127–140. Pergamon, New York (1979)

    Google Scholar 

  58. Ledbetter, H.M.: Monocrystal-polycrystal elastic-constant models. In: Levy, M., Bass, H.E., Stern, R.R. (eds.) Handbook of Elastic Properties of Solids, Liquids, and Gases, pp. 313–324. Academic Press, San Diego (2001)

    Google Scholar 

  59. Zarembo, L.K., Krasil’nikov, V.A.: Nonlinear phenomenon in the propagation of elastic waves. Sov. Phys. Usp. 13, 778–797 (1971)

    Article  ADS  Google Scholar 

  60. Thurston, R.N.: Waves in solids. In: Truesdell, C. (ed.) Mechanics of Solids, vol. 4, pp. 109–332. Springer, Berlin (1974)

    Chapter  Google Scholar 

  61. Cantrell, J.H.: Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 76, 3372–3380 (1994)

    Article  ADS  Google Scholar 

  62. Bunge, H.J., Roberts, W.T.: Orientation distribution, elastic and plastic anisotropy in stabilized steel sheet. J. Appl. Crystallogr. 2, 116–128 (1969)

    Article  Google Scholar 

  63. Man, C.-S., Li, J., Lu, W.-Y., Fan, X.: Ultrasonic measurement of through-thickness stress gradients in textured sheet metals. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 19, pp. 1613–1620. AIP, Melville (2000)

    Google Scholar 

  64. Kawashima, K., Man, C.-S., Huang, M.: Measurement of acoustoelastic constants of titanium sheet by resonance EMATs. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 20, pp. 1459–1466. AIP, Melville (2001)

    Google Scholar 

  65. Man, C.-S.: Personal communication (2014)

  66. Bunge, H.J.: Texture Analysis in Materials Science: Mathematical Methods. Butterworth, London (1982)

    Google Scholar 

  67. Paroni, R.: Optimal bounds on texture coefficients. J. Elast. 60, 19–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Chi-Sing Man of the University of Kentucky for lending the ODCs measured from a rolled sample of titanium, some of which have not been previously published. The authors would also like to thank the reviewers for their thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Kube.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(TXT 216 kB)

(TXT 2.4 MB)

Appendices

Appendix A: Relations Between the Single-Crystal Elastic Constants and Compliances

The relations between the second-order single-crystal elastic compliances and single-crystal elastic constants are obtained by solving the set of equations generated from (5). For cubic crystallite symmetry the relations are [26, 28]

$$\begin{aligned} s_{11}&=\frac{c_{11}+c_{12}}{ (c_{11}-c_{12} ) (c_{11}+2c_{12} )},\qquad s_{12}=-\frac{c_{12}}{ (c_{11}-c_{12} ) (c_{11}+2c_{12} )},\qquad s_{44}= \frac{1}{4c_{44}}. \end{aligned}$$
(A.1)

The second-order relations for hexagonal crystallite symmetry are

$$ \begin{aligned} s_{11}&=\frac{c_{11}c_{33} - c_{13}^{2}}{ (c_{12}-c_{11} ) [2c_{13}^{2} - c_{33} (c_{11} + c_{12} ) ]},\quad\quad s_{12}=\frac {c_{13}^{2} - c_{12}c_{33}}{ (c_{12}-c_{11} ) [2c_{13}^{2} - c_{33} (c_{11} + c_{12} ) ]} \\ s_{13}&=\frac{c_{13}}{2c_{13}^{2} - c_{33} (c_{11} + c_{12} )},\qquad s_{33}=\frac{c_{11} + c_{12}}{c_{33} (c_{11} + c_{12} )-2c_{13}^{2}},\qquad s_{44}= \frac{1}{4c_{44}}. \end{aligned} $$
(A.2)

The relations between the third-order single-crystal elastic compliances and single-crystal elastic constants are obtained by solving the set of equations generated from \(S_{ijklmn}=-S_{ijpq}S_{klrs}S_{mnuv}C_{pqrsuv}\). The third-order relations for cubic crystallite symmetry are [26, 28]

$$\begin{aligned} \begin{aligned} s_{{111}}&= - \bigl(s_{{11}}^{3}+2s_{{12}}^{3} \bigr)c_{{111}} - 6 \bigl(s_{{11}}^{2}+s_{{11}}s_{{12}}+s_{{12}}^{2} \bigr)s_{{12}}c_{{112}} - 6s_{{11}}s_{{12}}^{2}c_{{123}}, \\ s_{{112}}&= - \bigl(s_{{11}}^{2}+s_{{11}}s_{{12}}+s_{{12}}^{2} \bigr)s_{{12}} (c_{{111}}+2c_{{123}} ) - \bigl(s_{{11}}^{3}+3s_{{11}}^{2}s_{{12}}+9s_{{11}}s_{{12}}^{2}+5s_{{12}}^{3} \bigr)c_{{112}}, \\ s_{{123}}&= -3s_{{11}}s_{{12}}^{2}c_{{111}} - 6 \bigl(s_{{11}}^{2}s_{{12}}+s_{{11}}s_{{12}}^{2}+s_{{12}}^{3} \bigr)c_{{112}} - \bigl(s_{{11}}^{3}+3s_{{11}}s_{{12}}^{2}+2s_{{12}}^{3} \bigr)c_{{123}}, \\ s_{{144}}&= -4s_{{44}}^{2} (s_{{11}}c_{{144}}+2s_{{12}}c_{{155}} ), \qquad s_{{155}}= -4s_{{44}}^{2} \bigl(s_{{12}}c_{{144}}+(s_{{11}}+s_{{12}} )c_{{155}} \bigr), \\ s_{{456}}&= -8s_{{44}}^{3}c_{{456}}. \end{aligned} \end{aligned}$$
(A.3)

The third-order relations for hexagonal crystallite symmetry are

$$\begin{aligned} s_{{111}} = &-c_{{111}}s_{{11}}^{3} - c_{{222}}s_{{12}}^{3} - c_{{333}}s_{{13}}^{3} - 3c_{{112}}s_{{11}}^{2}s_{{12}} - 3c_{{113}}s_{{11}}^{2}s_{{13}} - 3c_{{113}}s_{{12}}^{2}s_{{13}} \\ &{} - 3c_{{133}}s_{{11}}s_{{13}}^{2} - 3c_{{133}}s_{{12}}s_{{13}}^{2} - 3s_{{11}}s_{{12}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} ) - 6c_{{123}}s_{{11}}s_{{12}}s_{{13}}, \\ s_{{112}} = &-s_{{12}}^{3} (c_{{111}} + c_{{112}} - c_{{222}} ) - c_{{112}}s_{{11}}^{3} - c_{{333}}s_{{13}}^{3} - c_{{111}}s_{{11}}^{2}s_{{12}} - 2c_{{112}}s_{{11}}s_{{12}}^{2} \\ &{} - c_{{113}}s_{{11}}^{2}s_{{13}} - c_{{113}}s_{{12}}^{2}s_{{13}} - 2c_{{123}}s_{{11}}^{2}s_{{13}} - 2c_{{123}}s_{{12}}^{2}s_{{13}} - 3c_{{133}}s_{{11}}s_{{13}}^{2} - 3c_{{133}}s_{{12}}s_{{13}}^{2} \\ &{} - c_{{222}}s_{{11}}s_{{12}}^{2}- 2s_{{11}}^{2}s_{{12}} (c_{{111}} + c_{{112}} - c_{{222}} ) - 4c_{{113}}s_{{11}}s_{{12}}s_{{13}} - 2c_{{123}}s_{{11}}s_{{12}}s_{{13}}, \\ s_{{113}} = &-2c_{{133}}s_{{13}}^{3} - c_{{111}}s_{{11}}^{2}s_{{13}} - c_{{112}}s_{{11}}^{2}s_{{13}} - 2c_{{113}}s_{{11}}s_{{13}}^{2} - 2c_{{113}}s_{{12}}s_{{13}}^{2} - 2c_{{123}}s_{{11}}s_{{13}}^{2} \\ &{} - 2c_{{123}}s_{{12}}s_{{13}}^{2} - c_{{113}}s_{{11}}^{2}s_{{33}} - c_{{222}}s_{{12}}^{2}s_{{13}} - c_{{333}}s_{{13}}^{2}s_{{33}} - s_{{12}}^{2}s_{{13}} (c_{{111}} + c_{{112}} - c_{{222}} ) \\ &{} - 2c_{{112}}s_{{11}}s_{{12}}s_{{13}} - 2c_{{123}}s_{{11}}s_{{12}}s_{{33}} - 2c_{{133}}s_{{11}}s_{{13}}s_{{33}} - 2c_{{133}}s_{{12}}s_{{13}}s_{{33}} \\ &{} - 2s_{{11}}s_{{12}}s_{{13}} (c_{{111}} + c_{{112}} - c_{{222}} ), \\ s_{{123}} = &-2c_{{133}}s_{{13}}^{3} - c_{{112}}s_{{11}}^{2}s_{{13}} - c_{{112}}s_{{12}}^{2}s_{{13}} - 2c_{{113}}s_{{11}}s_{{13}}^{2} - 2c_{{113}}s_{{12}}s_{{13}}^{2} - 2c_{{123}}s_{{11}}s_{{13}}^{2} \\ &{} - 2c_{{123}}s_{{12}}s_{{13}}^{2} - c_{{123}}s_{{11}}^{2}s_{{33}} - c_{{123}}s_{{12}}^{2}s_{{33}} - c_{{333}}s_{{13}}^{2}s_{{33}} - s_{{11}}^{2}s_{{13}} (c_{{111}} + c_{{112}} - c_{{222}} ) \\ &{} - s_{{12}}^{2}s_{{13}} (c_{{111}} + c_{{112}} - c_{{222}} ) - c_{{111}}s_{{11}}s_{{12}}s_{{13}} - c_{{112}}s_{{11}}s_{{12}}s_{{13}} - 2c_{{113}}s_{{11}}s_{{12}}s_{{33}} \\ &{} - 2c_{{133}}s_{{11}}s_{{13}}s_{{33}} - 2c_{{133}}s_{{12}}s_{{13}}s_{{33}}- c_{{222}}s_{{11}}s_{{12}}s_{{13}} - s_{{11}}s_{{12}}s_{{13}} (c_{{111}} + c_{{112}} - c_{{222}} ), \\ s_{{133}} = &-2c_{{113}}s_{{13}}^{3} - 2c_{{123}}s_{{13}}^{3} - c_{{111}}s_{{11}}s_{{13}}^{2} -2c_{{112}}s_{{11}}s_{{13}}^{2} - c_{{112}}s_{{12}}s_{{13}}^{2} - c_{{133}}s_{{11}}s_{{33}}^{2} \\ &{} - 4c_{{133}}s_{{13}}^{2}s_{{33}}- c_{{222}}s_{{12}}s_{{13}}^{2} - c_{{333}}s_{{13}}s_{{33}}^{2} - s_{{11}}s_{{13}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} ) \\ &{} - 2s_{{12}}s_{{13}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} )- 2c_{{113}}s_{{11}}s_{{13}}s_{{33}} - 2c_{{113}}s_{{12}}s_{{13}}s_{{33}} - 2c_{{123}}s_{{11}}s_{{13}}s_{{33}} \\ &{} - 2c_{{123}}s_{{12}}s_{{13}}s_{{33}}, \\ s_{{144}} = &-4c_{{144}}s_{{11}}s_{{44}}^{2} - 4c_{{155}}s_{{12}}s_{{44}}^{2} - 4c_{{344}}s_{{13}}s_{{44}}^{2}, \\ s_{{155}} = &-4c_{{144}}s_{{12}}s_{{44}}^{2} - 4c_{{155}}s_{{11}}s_{{44}}^{2} - 4c_{{344}}s_{{13}}s_{{44}}^{2}, \\ s_{{222}} = &-s_{{11}}^{3} (c_{{111}} + c_{{112}} - c_{{222}} ) - c_{{112}}s_{{12}}^{3} - c_{{333}}s_{{13}}^{3} - c_{{111}}s_{{11}}s_{{12}}^{2} - 2c_{{112}}s_{{11}}^{2}s_{{12}} - c_{{113}}s_{{11}}^{2}s_{{13}} \\ &{} - c_{{113}}s_{{12}}^{2}s_{{13}} - 2c_{{123}}s_{{11}}^{2}s_{{13}} - 2c_{{123}}s_{{12}}^{2}s_{{13}} - 3c_{{133}}s_{{11}}s_{{13}}^{2} - 3c_{{133}}s_{{12}}s_{{13}}^{2} - c_{{222}}s_{{11}}^{2}s_{{12}} \\ &{} - 2s_{{11}}s_{{12}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} ) - 4c_{{113}}s_{{11}}s_{{12}}s_{{13}} - 2c_{{123}}s_{{11}}s_{{12}}s_{{13}}, \\ s_{{333}} = &-2c_{{113}}s_{{13}}^{3} - 2c_{{123}}s_{{13}}^{3} - c_{{111}}s_{{11}}s_{{13}}^{2} - 2c_{{112}}s_{{11}}s_{{13}}^{2} - c_{{112}}s_{{12}}s_{{13}}^{2} - c_{{133}}s_{{11}}s_{{33}}^{2} \\ &{} - c_{{133}}s_{{12}}s_{{33}}^{2} - 4c_{{133}}s_{{13}}^{2}s_{{33}} - c_{{222}}s_{{12}}s_{{13}}^{2} - c_{{333}}s_{{13}}s_{{33}}^{2} - s_{{11}}s_{{13}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} ) \\ &{} - 2s_{{12}}s_{{13}}^{2} (c_{{111}} + c_{{112}} - c_{{222}} ) - 2c_{{113}}s_{{11}}s_{{13}}s_{{33}} - 2c_{{113}}s_{{12}}s_{{13}}s_{{33}} - 2c_{{123}}s_{{11}}s_{{13}}s_{{33}} \\ &{} - 2c_{{123}}s_{{12}}s_{{13}}s_{{33}}, \\ s_{{344}} = &-4c_{{144}}s_{{11}}s_{{44}}^{2} - 4c_{{155}}s_{{12}}s_{{44}}^{2} - 4c_{{344}}s_{{13}}s_{{44}}^{2}. \end{aligned}$$
(A.4)

Appendix B: Orientation Distribution Function

The ODF is a probability distribution function that defines the likelihood of crystallites having various orientations. Often, the ODF is expanded as a series of generalized spherical harmonics [51],

$$ w (\zeta,\psi,\phi )=\sum_{l=0}^{\infty}\sum _{m=-l}^{l}\sum_{n=-l}^{l}W_{lmn}Z_{lmn} (\zeta )\exp [-im\psi ]\exp [-in\phi ], $$
(B.1)

where \(\zeta=\cos\theta\). \(Z_{lmn} (\zeta )\) are the augmented Jacobi polynomials, which are generated by

$$\begin{aligned} Z_{lmn} (\zeta ) =&\sqrt{\frac{2l+1}{2}}\frac{ (-1 )^{l+n}}{2^{l} (l-m )!}\sqrt{ \frac{ (l-m )! (l+n )!}{ (l+m )! (l-n )!}} \\ &{} \times (1-\zeta )^{-\frac{n-m}{2}} (1+\zeta )^{-\frac{n+m}{2}}\frac{d^{l-n}}{d\zeta^{l-n}} \bigl[ (1-\zeta )^{l-m} (1+\zeta )^{l+m} \bigr]. \end{aligned}$$
(B.2)

The Jacobi polynomials \(Z_{lmn} (\zeta )\) exhibit the properties [13, 51]:

$$\begin{aligned} \begin{aligned} &\int_{-1}^{1}Z_{lmn} (\zeta)Z_{pmn} (\zeta )\text {d}\zeta=\delta_{lp},\qquad Z_{lmn} (\zeta )=Z_{l\bar{m}\bar{n}} (\zeta ), \\ &Z_{lmn} (\zeta )= (-1 )^{m+n}Z_{l\bar{n}\bar{m}} (\zeta ),\qquad Z_{lm\bar{n}} (\zeta )=Z_{lmn} (-\zeta )=Z_{l\bar{m}n} (\zeta), \end{aligned} \end{aligned}$$
(B.3)

where \(\bar{m}=-m\) for any integer \(m\). Since \(w (\zeta,\psi,\phi )\) is a probability distribution function, it must yield unity when integrated over all possible orientations,

$$ \int_{0}^{2\pi}\int_{0}^{2\pi} \int_{-1}^{1}w (\zeta,\psi,\phi )\mathrm{d}\zeta \mathrm{d}\psi\mathrm{d}\phi=1. $$
(B.4)

From (B.1)–(B.4), the \(l=m=n=0\) term in the ODF expansion is always \(W_{000}Z_{000}=1/8\pi^{2}\). All terms other than \(W_{000}Z_{000}\) are zero if the polycrystal is macroscopically isotropic. Thus, the other nonzero \(W_{lmn}\) can be considered the macroscopic anisotropy coefficients of the polycrystal. The number of ODCs are greatly reduced by considering symmetry conditions of the polycrystal and the constituent crystallites. For the case of orthorhombic texture, there exist three orthogonal 2-fold axes of symmetry that are parallel to the axes \(x_{1}\), \(x_{2}\), and \(x_{3}\). For this case, \(W_{lmn}=0\) when \(m\) is odd, while \(W_{lmn}=W_{l\bar {m}n}= (-1 )^{n}W^{\ast}_{lm\bar{n}}\) when \(m\) is even where ∗ denotes complex conjugate [51, 53].

The averaged elastic moduli in (17) and (18) and elastic compliances in (24) and (25) contain powers of \(\sin\theta\) or \(\cos\theta\) up to the rank of the tensor being averaged. The integration over \(\zeta\) from \([-1,1]\) for \(l\) greater than the rank of the elastic modulus or compliance tensors yields zero. Thus, the index \(l\) of the ODCs are bound between \(0< l\leq4\) and \(0< l\leq6\) for the fourth-rank and sixth-rank Voigt and Reuss averages, respectively. A proof of this identity is found in Man [16]. The nonzero and independent ODCs needed in the ODF expansion to define the Voigt and Reuss averages are \(W_{400}\), \(W_{420}\), \(W_{440}\), \(W_{600}\), \(W_{620}\), \(W_{640}\), and \(W_{660}\) for textured polycrystals containing cubic crystallites and \(W_{200}\), \(W_{220}\), \(W_{400}\), \(W_{420}\), \(W_{440}\), \(W_{600}\), \(W_{606}\), \(W_{620}\), \(W_{626}\), \(W_{640}\), \(W_{646}\), \(W_{660}\), and \(W_{666}\) for the case of hexagonal crystallites. Bounds on the possible values of \(W_{lmn}\) for polycrystals containing cubic and hexagonal crystallites were given by Paroni [67].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kube, C.M., Turner, J.A. Estimates of Nonlinear Elastic Constants and Acoustic Nonlinearity Parameters for Textured Polycrystals. J Elast 122, 157–177 (2016). https://doi.org/10.1007/s10659-015-9538-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9538-1

Keywords

Mathematics Subject Classification (2000)

Navigation