Skip to main content
Log in

Effect of deformation temperature on fatigue and fracture behavior in TiAl polysynthetically twinned crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature and orientation dependence of cyclic deformation, fatigue life, and fracture behavior in TiAl polysynthetically twinned (PST) crystals were investigated, focusing on the change of plastic strain energy and deformation mode in the γ domains. Stress-controlled fatigue tests were performed at 1 or 10 Hz using the same stress amplitude in tension and compression (R=−1) over a temperature range from −196 °C to 700 °C. The fatigue strength at ϕ=45 deg (ϕ being the angle between the loading axis and lamellar planes) decreased monotonically with increasing temperature. At ϕ=0 deg, the fatigue strength was high up to 500 °C, but the fatigue life decreased rapidly above 600°C because of dynamic recovery and interlamellar separation. The plastic strain energy—stress amplitude curves in specimens fatigued with ϕ=45 deg increased monotonically with stress amplitude for all temperatures and for higher temperatures with ϕ=0 deg. At 25 °C and −196 °C with ϕ=0 deg, three regions in the plastic strain energy—stress amplitude curves were observed. This anomalous change in the plastic strain energy at lower temperatures was due to a transition in primary deformation mode between twinning and slip by ordinary dislocations in some domain orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim: JOM, 1994, vol. 41, pp. 24–30.

    Google Scholar 

  2. Y.-W. Kim: Acta Metall. Mater., 1992, vol. 40, pp. 1121–34.

    Article  CAS  Google Scholar 

  3. M. Yamaguchi and H. Inui: Structural Intermetallics, TMS, Warrendale, PA, 1993, pp. 127–42.

    Google Scholar 

  4. Y.-W. Kim: JOM, 1994, vol. 46, pp. 30–39.

    CAS  Google Scholar 

  5. Y.-W. Kim: Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, TMS, Warrendale, PA, 1995, pp. 637–54.

    Google Scholar 

  6. H. Mughrabi: Mater. Sci. Eng., 1978, vol. 33, pp. 207–23.

    Article  CAS  Google Scholar 

  7. U. Essmann, U. Gösele, and H. Mughrabi: Phil. Mag., 1981, vol. A44, pp. 405–26.

    CAS  Google Scholar 

  8. N.R. Bonda, D.P. Dope, and C. Laird: Acta Metall. Mater., 1987, vol. 35, pp. 2385–92.

    Article  CAS  Google Scholar 

  9. L.M. Hsiung and N.S. Stoloff: Acta Metall. Mater., 1992, vol. 40, pp. 2993–3001.

    Article  CAS  Google Scholar 

  10. L.M. Hsiung and N.S. Stoloff: Acta Metall. Mater., 1994, vol. 42, pp. 1457–67.

    Article  CAS  Google Scholar 

  11. D. Shechtman, M.J. Blackburn, and H.A. Lipsitt: Metall. Trans., 1974, vol. 5, pp. 1373–81.

    Article  CAS  Google Scholar 

  12. S.M.L. Sastry and H.A. Lipsitt: Metall. Trans. A, 1977, vol. 8A, pp. 299–308.

    CAS  Google Scholar 

  13. A.W. James and P. Bowen: Mater. Sci. Eng., 1992, vol. A153, pp. 486–92.

    Article  Google Scholar 

  14. W.O. Soboyejo, K.T. Venkateswara Rao, S.M.L. Sastry, and R.O. Ritchie: Metall. Trans. A, 1992, vol. 24A, pp. 585–600.

    Google Scholar 

  15. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie: Acta Metall., 1994, vol. 42, pp. 893–911.

    Article  Google Scholar 

  16. K. Sadananda and A.K. Vasudevan: Mater. Sci. Eng., 1995, vol. A192–193, pp. 490–501.

    Google Scholar 

  17. J.S. Kumpfert, Y.-W. Kim, and D.M. Dimiduk: Mater. Sci. Eng., 1995, vol. A192-A193, pp. 465–73.

    Google Scholar 

  18. R.S. Gnanamoorthy, Y. Mutoh, and Y. Mizuhara: Intermetallics, 1996, vol. 4, pp. 525–29.

    Article  CAS  Google Scholar 

  19. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    Article  CAS  Google Scholar 

  20. T. Fujiwara, A. Nakamura, H. Hosomi, S.R. Nishitani, Y. Shirai, and M. Yamaguchi: Phil. Mag., 1990, vol. A61, pp. 591–606.

    Article  CAS  Google Scholar 

  21. H. Inui, A. Nakamura, M.H. Oh, and M. Yamaguchi: Acta Metall. Mater., 1992, vol. 40, pp. 3095–3104.

    Article  CAS  Google Scholar 

  22. Y. Umakoshi and T. Nakano: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1339–47.

    CAS  Google Scholar 

  23. H. Inui, A. Nakamura, M.H. Oh, and M. Yamaguchi: Phil. Mag., 1992, vol. 66, pp. 557–72.

    Article  CAS  Google Scholar 

  24. Y. Umakoshi and T. Nakano: Acta Metall. Mater., 1993, vol. 4, pp. 1155–61.

    Google Scholar 

  25. H. Inui, K. Kishida, M. Misaki, M. Kobayashi, Y. Shirai, and M. Yamaguchi: Phil. Mag., 1995, vol. A72, pp. 1609–31.

    Article  CAS  Google Scholar 

  26. T. Nakano, H.Y. Yasuda, N. Higashitanaka, and Y. Umakoshi: Acta Metall. Mater., 1997, vol. 45, pp. 4807–21.

    CAS  Google Scholar 

  27. T. Nakano, T. Kawanaka, H.Y. Yasuda, and Y. Umakoshi: Mater. Sci. Eng., 1995, vol. A194, pp. 43–51.

    Article  Google Scholar 

  28. S. Yokoshima and M. Yamaguchi: Acta Mater., 1996, vol. 44, pp. 873–83.

    Article  CAS  Google Scholar 

  29. M. Yamaguchi and Y. Umakoshi: Progr. Mater. Sci., 1990, vol. 34, pp. 60–83.

    Article  Google Scholar 

  30. Y. Umakoshi, H.Y. Yasuda, and T. Nakano: Mater. Sci. Eng., 1995, vol. A194, pp. 511–17.

    Google Scholar 

  31. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Phil. Mag., 1995, vol. A71, pp. 127–38.

    CAS  Google Scholar 

  32. Y. Umakoshi, H.Y. Yasuda, and T. Nakano: Intermetallics, 1996, vol. 4, pp. S65-S75.

    Article  CAS  Google Scholar 

  33. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Phil. Mag., 1996, vol. A73, pp. 1035–51.

    Article  CAS  Google Scholar 

  34. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Phil. Mag., 1996, vol. A73, pp. 1053–67.

    Article  CAS  Google Scholar 

  35. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Phil. Mag. Lett., 1996, vol. 73, pp. 225–31.

    Article  CAS  Google Scholar 

  36. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Intermetallics, 1996, vol. 4, pp. 289–98.

    Article  CAS  Google Scholar 

  37. P. Bowen, R.A. Chave, and A.W. James: Mater. Sci. Eng., 1995, vols. A192–193, pp. 443–56.

    Google Scholar 

  38. F. Appel, P.A. Beaven, and R. Wagner: Acta Metall. Mater., 1993, vol. 41, pp. 1721–32.

    Article  CAS  Google Scholar 

  39. B.K. Kad, P.M. Hazzledine, and H.L. Fraser: High-Temperature Ordered Intermetallic Alloys V, Materials Research Society Symposia Proceedings, I. Baker, R. Darolia, J.D. Whitterberger, and M.H. Yoo, eds., Materials Research Society, Pittsburg, PA, 1993, pp. 495–500.

    Google Scholar 

  40. F. Appel and R. Wagner: Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 231–44.

    Google Scholar 

  41. J. Luster and M.A. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1745–56.

    Article  CAS  Google Scholar 

  42. H.Y. Yasuda, T. Nakano, and Y. Umakoshi: Intermetallics, 1996, vol. 4, pp. 289–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umakoshi, Y., Yasuda, H.Y., Nakano, T. et al. Effect of deformation temperature on fatigue and fracture behavior in TiAl polysynthetically twinned crystals. Metall Mater Trans A 29, 943–950 (1998). https://doi.org/10.1007/s11661-998-1003-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-1003-3

Keywords

Navigation