Skip to main content
Log in

Numerical models of creep and boundary sliding mechanisms in single-phase, dual-phase, and fully lamellar titanium aluminide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Finite element simulations of the high-temperature behavior of single-phase γ, dual-phase α2+γ, and fully lamellar (FL) α2+γTiAl intermetallic alloy microstructures have been performed. Nonlinear viscous primary creep deformation is modeled in each phase based on published creep data. Models were also developed that incorporate grain boundary and lath boundary sliding in addition to the dislocation creep flow within each phase. Overall strain rates are compared to gain an understanding of the relative influence each of these localized deformation mechanisms has on the creep strength of the microstructures considered. Facet stress enhancement factors were also determined for the transverse grain facets in each model to examine the relative susceptibility to creep damage. The results indicate that a mechanism for unrestricted sliding of γ lath boundaries theorized by Hazzledine and co-workers leads to unrealistically high strain rates. However, the results also suggest that the greater creep strength observed experimentally for the lamellar microstructure is primarily due to inhibited former grain boundary sliding (GBS) in this microstructure compared to relatively unimpeded GBS in the equiaxed microstructures. The serrated nature of the former grain boundaries generally observed for lamellar TiAl alloys is consistent with this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim: J. Met., 1994, vol. 46, pp. 30–39.

    CAS  Google Scholar 

  2. Y.W. Kim and D.M. Dimiduk: J. Met., 1991, vol. 43, pp. 40–47.

    CAS  Google Scholar 

  3. S.C. Huang and D.S. Shih: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 105–22.

    Google Scholar 

  4. D.S. Shih, S.C. Huang, G.K. Scarr, H. Jang, and J.C. Chestnut: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.W. Kim and R.R. Boyer, eds., TMS Warrendale, PA, 1991, pp. 135–48.

    Google Scholar 

  5. M.F. Bartholomeusz, Q. Yang, and J.A. Wert: Scripta Metall. Mater., 1993, vol. 29, pp. 389–94.

    Article  CAS  Google Scholar 

  6. R.E. Schafrik: Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    CAS  Google Scholar 

  7. B.K. Kad, M. Dao, and R.J. Asaro: Phil. Mag. A, 1995, vol. 71, pp. 567–604.

    CAS  Google Scholar 

  8. B.K. Kad, P.M. Hazzledine, and H.L. Fraser: in Materials Research Society Symp. Proc., 1993, vol. 288, pp. 495–500.

    CAS  Google Scholar 

  9. P.M. Hazzledine and B.K. Kad: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 340–46.

    Google Scholar 

  10. F.W. Crossman and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 425–40.

    Article  CAS  Google Scholar 

  11. G.J. Rodin and M.W. Dib: in Advances in Fracture Research, K. Salama, K. Ravi Chandar, D.M.R. Taplin, and P. Rama Rao, eds., Pergamon Press, Oxford, United Kingdom, 1989, vol. 2, pp. 1835–42.

    Google Scholar 

  12. K.J. Hsia, D.M. Parks, and A.S. Argon: Mech. Mater., 1991, vol. 11, pp. 43–62.

    Article  Google Scholar 

  13. T.G. Langdon and R.B. Vastava: in Mechanical Testing for Deformation Model Development, ASTM STP 765, R.W. Rohde and J.C. Swearengen, eds., ASTM, Philadelphia, PA, 1982, pp. 435–51.

    Google Scholar 

  14. O.A. Ruano, A.K. Miller, and O.D. Sherby: Mater. Sci. Eng., 1981, vol. 51, pp. 9–16.

    Article  CAS  Google Scholar 

  15. F. Ghahremani: Int. J. Solids Struct., 1980, vol. 16, pp. 847–62.

    Article  Google Scholar 

  16. I.W. Chen and A.S. Argon: Acta Metall., 1979, vol. 27, pp. 749–54.

    Article  CAS  Google Scholar 

  17. B. Engelmann and J.O. Hallquist: NIKE2D User Manual, [UCRL-MA-105413,] Lawrence Livermore National Laboratory, Livermore, CA, Apr. 1991.

    Google Scholar 

  18. H.K. Kim, J. Wolfenstine, and J.C. Earthman: Scripta Metall. Mater., 1992, vol. 27, pp. 1067–72.

    Article  CAS  Google Scholar 

  19. G. Hug, A. Loiseau, and P. Veyssiere: Phil. Mag. A, 1988, vol. 57, pp. 499–523.

    CAS  Google Scholar 

  20. P.M. Anderson and J.R. Rice: Acta Metall., 1985, vol. 33, pp. 409–22.

    Article  CAS  Google Scholar 

  21. C. Zener: Phys. Rev., 1941, vol. 60, pp. 906–08.

    Article  Google Scholar 

  22. F. Ghahremani: Int. J. Solids Struct., 1980, vol. 16, pp. 825–45.

    Article  Google Scholar 

  23. R.G. Whirley and G.A. Henshall: Int. J. Numer. Methods Eng., 1992, vol. 35, pp. 1427–42.

    Article  Google Scholar 

  24. I.W. Chen and A.S. Argon: Acta Metall., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  25. H. Inui, M.H. Oh, A. Nakamura, and M. Yamaguchi: Phil. Mag. A, 1992, vol. 66, pp. 539–55.

    CAS  Google Scholar 

  26. S. Mitao, S. Tsuyama, and K. Minakawa: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.W. Kim and R.R. Boyer, eds., TMS Warrendale, PA, 1991, pp. 297–311.

    Google Scholar 

  27. D. Hull and D.E. Rimmer: Phil. Mag. A, 1959, vol. 4, pp. 673–87.

    CAS  Google Scholar 

  28. A.C.F. Cocks and M.F. Ashby: Progr. Mater. Sci., 1982, vol. 27, pp. 189–244.

    Article  CAS  Google Scholar 

  29. A.S. Argon: in Recent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, United Kingdom, 1982, pp. 1–52.

    Google Scholar 

  30. W.D. Nix, J.C. Earthman, G. Eggeler, and B. Ilschner: Acta Metall., 1989, vol. 37, pp. 1067–77.

    Article  CAS  Google Scholar 

  31. C.W. Lau, A.S. Argon, and F.A. McClintock: in Elastic-Plastic Fracture: Second Symposium, ASTM STP 803, C.F. Shih and J.P. Gudas, eds., ASTM, Philadelphia, PA, 1983, vol. 1, pp. 551–71.

    Google Scholar 

  32. H. Riedel: Acta Metall., 1984, vol. 32, pp. 313–21.

    Article  CAS  Google Scholar 

  33. P. Onck and E. van der Giessen: Report No. 1070, Delft University of Technology, Delft, The Netherlands, Oct. 1995.

    Google Scholar 

  34. J.R. Rice: Acta Metall., 1981, vol. 29, pp. 675–81.

    Article  CAS  Google Scholar 

  35. R.W. Hayes and P.A. McQuay: Scripta Metall., 1994, vol. 30, pp. 259–64.

    Article  CAS  Google Scholar 

  36. M. Es-Souni, A. Bartels, and R. Wagner: Mater. Sci. Eng. A, 1993, vol. 171, pp. 127–41.

    Article  Google Scholar 

  37. J.O. Hallquist, G.L. Goudreau, and D.J. Benson: Comput. Methods Appl. Mech. Eng., 1985, vol. 51, pp. 107–37.

    Article  Google Scholar 

  38. J.O. Hallquist: in Computational Techniques for Interface Problems, A.S.M.E., New York, K.C. Park and D.K. Gartling, eds., 1978, AMD vol. 30, pp. 117–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Earthman, J.C. Numerical models of creep and boundary sliding mechanisms in single-phase, dual-phase, and fully lamellar titanium aluminide. Metall Mater Trans A 28, 979–989 (1997). https://doi.org/10.1007/s11661-997-0228-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0228-x

Keywords

Navigation