Skip to main content
Log in

The Anelastic Behaviors of Co–Fe–Ni–P Metallic Nano-glasses: Studies on the Viscous Glass–Glass Interfaces

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structural relaxations of grain boundary and glass–glass interfaces (GGIs) play an important role in the mechanical behaviors of polycrystalline metals and metallic nano-glasses (NGs), respectively. Although the former has been well investigated by anelastic or mechanical spectrum measurement, such meaningful technique has not been applied to characterize the structural relaxation of GGIs in NGs as far. In this work, the structural relaxations in Co–Fe–Ni–P NGs with various average sizes (Davg) of glassy grains are investigated by anelastic measurements, which have been synthesized by a pulse electrodeposition method. The results provide direct evidences that a new glass phase could be formed at interfaces in NGs, as characterized by an activation energy (0.91 eV) for glass transition of GGIs much different than that (1.99 eV) in the interiors of glassy grains. From the analyses on dynamical scaling for mechanical losses (Q−1) in the glass and supercooled-liquid (SC-liquid) states, i.e., \({Q}^{-1}\propto ({\omega )}^{-n}\), where \(\omega \) is the angular frequency, it is suggested that the atomic structures at GGIs in NGs with Davg < 150 nm could be dominated by solid-like atomic clusters, whereas those in NGs with Davg > 250 nm might be liquid-like. The size effects on the glass forming ability of NGs are also quantitatively measured by exponents of the dynamical scaling in the SC-liquid state, suggesting that NGs with Davg < 40 nm could be good glass formers. The atomic structures at GGIs revealed in this work could facilitate the development of NGs with desirable mechanical properties through GGI engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Gleiter: Beilstein J. Nanotechnol., 2013, vol. 4, pp. 517–33.

    Article  CAS  Google Scholar 

  2. H. Gleiter, T. Schimmel, and H. Hahn: Nano Today, 2014, vol. 9, pp. 17–68.

    Article  CAS  Google Scholar 

  3. N. Chen, D.V. Louzguine-Luzgin, and K. Yao: J. Alloys Compd., 2017, vol. 707, pp. 371–78.

    Article  CAS  Google Scholar 

  4. T. Feng, H. Hahn, and H. Gleiter: Acta Phys. Sin., 2017, vol. 66, p. 176110.

    Article  Google Scholar 

  5. S.V. Ketov, X. Shi, G. Xie, R. Kumashiro, A.Y. Churyumov, A.I. Bazlov, N. Chen, Y. Ishikawa, N. Asao, H. Wu, and D.V. Louzguine-Luzgin: Sci. Rep., 2015, vol. 5, p. 7799.

    Article  CAS  Google Scholar 

  6. K. Wu, F. Chu, Y. Meng, K. Edalati, Q. Gao, W. Li, and H.-J. Lin: J. Mater. Chem. A, 2021, vol. 9, pp. 12152–60.

    Article  CAS  Google Scholar 

  7. X. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J. Fang: Scr. Mater., 2016, vol. 116, pp. 95–99.

    Article  CAS  Google Scholar 

  8. Q. Hu, J. Wu, and B. Zhang: Phys. B, 2017, vol. 521, pp. 28–31.

    Article  CAS  Google Scholar 

  9. F.C. Li, T.Y. Wang, Q.F. He, B.A. Sun, C.Y. Guo, T. Feng, and Y. Yang: Scr. Mater., 2018, vol. 154, pp. 186–91.

    Article  CAS  Google Scholar 

  10. C. Guo, Y. Fang, F. Chen, and T. Feng: Intermetallics, 2019, vol. 110, p. 106480.

    Article  CAS  Google Scholar 

  11. C. Pei, R. Zhao, Y. Fang, S. Wu, Z. Cui, B. Sun, S. Lan, P. Luo, W. Wang, and T. Feng: J. Alloys Compd., 2020, vol. 836, p. 155506.

    Article  CAS  Google Scholar 

  12. S.P. Singh, M.R. Chellali, L. Velasco, Y. Ivanisenko, E. Boltynjuk, H. Gleiter, and H. Hahn: J. Alloys Compd., 2020, vol. 821, p. 153486.

    Article  CAS  Google Scholar 

  13. T. Li and G. Zheng: Metall. Mater. Trans. A, 2021, vol. 52, pp. 1939–46.

    Article  CAS  Google Scholar 

  14. Q. Yang, C.-Q. Pei, H.-B. Yu, and T. Feng: Nano Lett., 2021, vol. 21, pp. 6051–56.

    Article  CAS  Google Scholar 

  15. S.H. Nandam, R. Schwaiger, A. Kobler, C. Kübel, C. Wang, Y. Ivanisenko, and H. Hahn: J. Mater. Res., 2021, vol. 36, pp. 2903–14.

    Article  CAS  Google Scholar 

  16. J.L. Ma, H.Y. Song, M.R. An, W.W. Li, and R.Q. Han: J. Non. Cryst. Solids, 2021, vol. 553, p. 120464.

    Article  CAS  Google Scholar 

  17. S. Yuan and P.S. Branicio: Scr. Mater., 2021, vol. 194, p. 113639.

    Article  CAS  Google Scholar 

  18. O. Adjaoud and K. Albe: Front. Mater., 2021, vol. 8, p. 664220.

    Article  Google Scholar 

  19. C. Kalcher, O. Adjaoud, and K. Albe: Front. Mater., 2020, vol. 7, p. 223.

    Article  Google Scholar 

  20. S. Yuan and P.S. Branicio: Int. J. Plast., 2020, p. 102845.

  21. S.D. Feng, Y.D. Liu, L.M. Wang, and R.P. Liu: J. Non. Cryst. Solids, 2020, vol. 546, p. 120265.

    Article  CAS  Google Scholar 

  22. A. Baksi, S.H. Nandam, D. Wang, R. Kruk, M.R. Chellali, J. Ivanisenko, I. Gallino, H. Hahn, and S. Bag: ACS Appl. Nano Mater., 2020, vol. 3, pp. 7252–59.

    Article  CAS  Google Scholar 

  23. M. Ghafari, X. Mu, J. Bednarcik, W.D. Hutchison, H. Gleiter, and S.J. Campbell: J. Magn. Magn. Mater., 2020, vol. 494, p. 165819.

    Article  CAS  Google Scholar 

  24. J. Cheng, T. Li, S. Ullah, F. Luo, H. Wang, M. Yan, and G. Zheng: Nanotechnology, 2020, vol. 31, p. 385704.

    Article  CAS  Google Scholar 

  25. J.Q. Wang, N. Chen, P. Liu, Z. Wang, D.V. Louzguine-Luzgin, M.W. Chen, and J.H. Perepezko: Acta Mater., 2014, vol. 79, pp. 30–36.

    Article  CAS  Google Scholar 

  26. M. Mohri, D. Wang, J. Ivanisenko, H. Gleiter, and H. Hahn: J. Alloys Compd., 2018, vol. 735, pp. 2197–2204.

    Article  CAS  Google Scholar 

  27. S.H. Nandam, O. Adjaoud, R. Schwaiger, Y. Ivanisenko, M.R. Chellali, D. Wang, K. Albe, and H. Hahn: Acta Mater., 2020, vol. 193, pp. 252–60.

    Article  CAS  Google Scholar 

  28. M. Mohri, M.R. Chellali, D. Wang, and J. Ivanisenko: Met. Mater. Int., 2021.

  29. T. Li, K. Ma, and G. Zheng: J. Mater. Res., 2021, vol. 36, pp. 4951–62.

    Article  CAS  Google Scholar 

  30. H. Gleiter: Small, 2016, vol. 12, pp. 2225–33.

    Article  CAS  Google Scholar 

  31. N. Chen, D. Wang, T. Feng, R. Kruk, K.F. Yao, D.V. Louzguine-Luzgin, H. Hahn, and H. Gleiter: Nanoscale, 2015, vol. 7, pp. 6607–11.

    Article  CAS  Google Scholar 

  32. S.H. Nandam, Y. Ivanisenko, R. Schwaiger, Z. Śniadecki, X. Mu, D. Wang, R. Chellali, T. Boll, A. Kilmametov, T. Bergfeldt, H. Gleiter, and H. Hahn: Acta Mater., 2017, vol. 136, pp. 181–89.

    Article  CAS  Google Scholar 

  33. Z. Sniadecki, D. Wang, Y. Ivanisenko, V.S.K. Chakravadhanula, C. Kübel, H. Hahn, and H. Gleiter: Mater. Charact., 2016, vol. 113, pp. 26–33.

    Article  CAS  Google Scholar 

  34. M. Mohri, D. Wang, J. Ivanisenko, H. Gleiter, and H. Hahn: Mater. Charact., 2017, vol. 131, pp. 140–47.

    Article  CAS  Google Scholar 

  35. X.D. Wang, Q.P. Cao, J.Z. Jiang, H. Franz, J. Schroers, R.Z. Valiev, Y. Ivanisenko, H. Gleiter, and H.J. Fecht: Scr. Mater., 2011, vol. 64, pp. 81–84.

    Article  CAS  Google Scholar 

  36. H. Shao, Y. Xu, B. Shi, C. Yu, H. Hahn, H. Gleiter, and J. Li: J. Alloys Compd., 2013, vol. 548, pp. 77–81.

    Article  CAS  Google Scholar 

  37. C. Guo, Y. Fang, B. Wu, S. Lan, G. Peng, X.L. Wang, H. Hahn, H. Gleiter, and T. Feng: Mater. Res. Lett., 2017, vol. 5, pp. 293–99.

    Article  CAS  Google Scholar 

  38. O. Franke, D. Leisen, H. Gleiter, and H. Hahn: J. Mater. Res., 2014, vol. 29, pp. 1210–16.

    Article  CAS  Google Scholar 

  39. A. Sharma, S.H. Nandam, H. Hahn, and K.E. Prasad: Scr. Mater., 2021, vol. 191, pp. 17–22.

    Article  CAS  Google Scholar 

  40. X.L. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J.X. Fang: Scr. Mater., 2015, vol. 98, pp. 40–43.

    Article  CAS  Google Scholar 

  41. K. Albe, Y. Ritter, and D. Şopu: Mech. Mater., 2013, vol. 67, pp. 94–103.

    Article  Google Scholar 

  42. S. Adibi, P.S. Branicio, Y.W. Zhang, and S.P. Joshi: J. Appl. Phys., 2014, vol. 116, p. 043522.

    Article  CAS  Google Scholar 

  43. S. Adibi, P.S. Branicio, and S.P. Joshi: Sci. Rep., 2015, vol. 5, p. 15611.

    Article  CAS  Google Scholar 

  44. K. Zheng and P. Branicio: Phys. Rev. Mater., 2020, vol. 4, p. 076001.

    Article  CAS  Google Scholar 

  45. C. Wang, D. Wang, X. Mu, S. Goel, T. Feng, Y. Ivanisenko, H. Hahn, and H. Gleiter: Mater. Lett., 2016, vol. 181, pp. 248–52.

    Article  CAS  Google Scholar 

  46. X. Mu, L. Chen, R. Mikut, H. Hahn, and C. Kübel: Acta Mater., 2021, vol. 212, p. 116932.

    Article  CAS  Google Scholar 

  47. J.X. Fang, U. Vainio, W. Puff, R. Würschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter: Nano Lett., 2012, vol. 12, pp. 458–63.

    Article  CAS  Google Scholar 

  48. Y. Ritter, D. Opu, H. Gleiter, and K. Albe: Acta Mater., 2011, vol. 59, pp. 6588–93.

    Article  CAS  Google Scholar 

  49. K. Zheng, S. Yuan, H. Hahn, and P.S. Branicio: Sci. Rep., 2021, vol. 11, p. 19246.

    Article  CAS  Google Scholar 

  50. R. Witte, T. Feng, J.X. Fang, A. Fischer, M. Ghafari, R. Kruk, R.A. Brand, D. Wang, H. Hahn, and H. Gleiter: Appl. Phys. Lett., 2013, vol. 103, p. 073106.

    Article  CAS  Google Scholar 

  51. C. Liu, E. Pineda, and D. Crespo: Metals, 2015, vol. 5, pp. 1073–1111.

    Article  Google Scholar 

  52. E. Bonetti: Philos. Mag. B, 1987, vol. 56, p. 185.

    Article  CAS  Google Scholar 

  53. H. Okumura, H.S. Chen, A. Inoue, and T. Masumoto: Jpn. J. Appl. Phys., 1991, vol. 30, pp. 2553–57.

    Article  CAS  Google Scholar 

  54. Y. He and X. Li: Phys. Status Solidi, 1987, vol. 99, pp. 115–20.

    Article  CAS  Google Scholar 

  55. X.-G. Li, Y. Zhang, and Y. He: J. Phys. Condens. Matter, 1990, vol. 2, pp. 809–16.

    Article  CAS  Google Scholar 

  56. Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, and J. Lu: Nat. Commun., 2015, vol. 6, p. 7876.

    Article  CAS  Google Scholar 

  57. Y. Ueno, M. Hojo, H. Numakura, T. Ichitsubo, and J. Saida: Mater. Sci. Eng. A, 2009, vol. 521–522, pp. 232–35.

    Article  CAS  Google Scholar 

  58. B. Cai, L.Y. Shang, P. Cui, and J. Eckert: Phys. Rev. B, 2004, vol. 70, p. 184208.

    Article  CAS  Google Scholar 

  59. Q. Wang, J.M. Pelletier, Y. Da Dong, Y.F. Ji, and H. Xiu: Mater. Sci. Eng. A, 2004, vol. 379, pp. 197–203.

    Article  CAS  Google Scholar 

  60. Z. Wang, D. Wang, P. Jiang, W. Wu, X. Li, F. Zu, and J. Shui: J. Wuhan Univ. Technol. Sci. Ed., 2017, vol. 32, pp. 1476–80.

    Article  CAS  Google Scholar 

  61. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 1999.

  62. C.W. Macosko: Rheology: Principles, Measurements, and Applications, 1996.

  63. A. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, 1972.

  64. N. Chen, D. Wang, P.F. Guan, H.Y. Bai, W.H. Wang, Z.J. Zhang, H. Hahn, and H. Gleiter: Appl. Phys. Lett., 2019, vol. 114, p. 043103.

    Article  CAS  Google Scholar 

  65. T. Li, Y. Shen, and G. Zheng: Scr. Mater., 2021, vol. 203, p. 114109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU152607/16E).

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 23, 2022; accepted July 23, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zheng, G. The Anelastic Behaviors of Co–Fe–Ni–P Metallic Nano-glasses: Studies on the Viscous Glass–Glass Interfaces. Metall Mater Trans A 53, 3736–3748 (2022). https://doi.org/10.1007/s11661-022-06781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06781-4

Navigation