Skip to main content
Log in

Understanding the Initial Solidification Behavior for Al–Si Alloy in Cold Chamber High-Pressure Die Casting (CC-HPDC) Process Combining Experimental and Modeling Approach

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the cold chamber high-pressure die casting (CC-HPDC) process, alloy solidification in the shot sleeve due to heat loss leads to the formation of externally solidified crystals (ESCs), which have been proven to be closely related to microstructure inhomogeneity and mechanical properties of cast components. In this paper, the solidification behavior of aluminum alloy inside the shot sleeve is studied using a numerical modeling approach. Fluid flow, heat transfer, and solidification of aluminum alloy melt inside the shot sleeve are studied using ProCAST software in three dimensions. A comparison between modeling and experiments shows good correspondence. Moreover, the evolution and distribution of ESCs in the shot sleeve along with their dependence on the piston motion profile are analyzed accordingly. The results show that after the melt impinges the shot sleeve wall, a thin layer of initial solid forms on the wall with a non-uniform distribution along the sleeve in both the longitudinal and radial directions. With piston movement, the initial solid fraction first increases and then decreases to some extent before being injected into the die cavity. The amount of ESCs at the melt free surface are quantitatively analyzed and validated for different piston motion profiles. The results of this work would be useful in further microstructure and mechanical property variability study of high-pressure die casting products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Reference

  1. Y. Lu, F. Taheri, and M. Gharghouri: J. Alloy Compd., 2008, vol. 466(1-2), pp. 214–27.

  2. Z. Yuan, Z. Guo, and S.M. Xiong: Mater. Charact., 2018, vol. 135, pp. 278–86.

    Article  CAS  Google Scholar 

  3. Y. Zhang, J.B. Patel, J. Lazaro-Nebreda, and Z. Fan: JOM, 2018, vol. 70, pp. 2726–30.

    Article  CAS  Google Scholar 

  4. H.I. Laukli, C.M. Gourlay, and A.K. Dahle: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 805–18.

    Article  Google Scholar 

  5. S. Otarawanna, C.M. Gourlay, H.I. Laukli, et al.: Metall. Mater. Trans. A, 2009, vol. 40(7)A, pp. 1645–59.

    Article  Google Scholar 

  6. H.I. Laukli, O. Lohne, S. Sannes, et al.: Int. J. Cast Met. Res., 2003, vol. 16(6), pp. 515–21.

    Article  CAS  Google Scholar 

  7. G. Timelli and A. Fabrizi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5486–98.

    Article  CAS  Google Scholar 

  8. Z. Fan, M. Xia, H. Zhang, et al.: Int. J. Cast Met. Res., 2009, vol. 22, pp. 103–07.

    Article  CAS  Google Scholar 

  9. Z. Fan, M. Xia, Z. Bian, et al.: Mater. Sci. Forum, 2010, vol. 649, pp. 315–23.

    Article  CAS  Google Scholar 

  10. S.G. Lee, G.R. Patel, A.M. Gokhale, et al.: Scr. Mater., 2005, vol. 53, pp. 851–56.

    Article  CAS  Google Scholar 

  11. S. Ji, W. Yang, Z. Fan, et al.: Mat. Sci. Eng. A-Struct., 2013, vol. 566, pp. 119–25.

    Article  CAS  Google Scholar 

  12. K. Dou, E. Lordan, and Y. Zhang et al. J. Mater. Process. Technol., 2021, vol. 296, https://doi.org/10.1016/j.jmatprotec.2021.117193.

  13. K. Dou, E. Lordan, Y.J. Zhang, et al.: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 529, p. 012058. https://doi.org/10.1088/1757-899X/529/1/012058.

    Article  CAS  Google Scholar 

  14. K. Dou, E. Lordan, Y.J. Zhang, et al.: J. Manuf. Process., 2020, vol. 60, pp. 435–46. https://doi.org/10.1016/j.jmapro.2020.10.062.

    Article  Google Scholar 

  15. R. Helenius, O. Lohne, L. Arnberg, and H.I. Laukli: Mat. Sci. Eng. A-Struct., 2005, vol. 413, pp. 52–55.

    Article  Google Scholar 

  16. W. Yu, Y. Cao, and S. Xiong: J. Mater. Sci. Technol., 2017, vol. 33(1), pp. 52–58.

    Article  CAS  Google Scholar 

  17. Y. Cao, S. Xiong, and Z. Guo: Acta Metall. Sin., 2015, vol. 51, pp. 745–52.

    CAS  Google Scholar 

  18. W. Yu, S. Liang, S. Xiong, et al.: China Foundry, 2017, vol. 14, pp. 258–64.

    Article  Google Scholar 

  19. B.S. Wang and S.M. Xiong: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 767–72.

    Article  CAS  Google Scholar 

  20. X.B. Li, S.M. Xiong, and Z.P. Guo: Mat. Sci. Eng. A-Struct., 2015, vol. 633, pp. 35–41.

    Article  CAS  Google Scholar 

  21. S. Ferraro and G. Timelli: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1022–34.

    Article  CAS  Google Scholar 

  22. D.R. Gunasegaram, M. Givord, R.G. O’Donnell, and B.R. Finnin: Mat. Sci. Eng. A-Struct., 2013, vol. 559, pp. 276–86.

    Article  CAS  Google Scholar 

  23. H.I. Laukli, L. Arnberg, and O. Lohne: Int. J. Cast Met. Res., 2005, vol. 18, pp. 65–72.

    Article  CAS  Google Scholar 

  24. B.S. Wang and S.M. Xiong: T. Nonferr. Met. Soc., 2011, vol. 21, pp. 767–72.

    Article  CAS  Google Scholar 

  25. C.M. Gourlay, A.K. Dahle, and H.I. Laukli: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2881–91.

    Article  CAS  Google Scholar 

  26. C. Bi, S. Xiong, X. Li, and Z. Guo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 939–47.

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by EPSRC UK in the EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering (The EPSRC Centre-LiME).

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Dou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, K., Zhang, Y., Lordan, E. et al. Understanding the Initial Solidification Behavior for Al–Si Alloy in Cold Chamber High-Pressure Die Casting (CC-HPDC) Process Combining Experimental and Modeling Approach. Metall Mater Trans A 53, 3110–3124 (2022). https://doi.org/10.1007/s11661-022-06731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06731-0

Navigation