Skip to main content
Log in

Phase Transformations During Homogenization of Inconel 718 Alloy Fabricated by Suction Casting and Laser Powder Bed Fusion: A CALPHAD Case Study Evaluating Different Homogenization Models

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Estimating the required homogenization time during post-heat treatment after alloy fabrication is critical for both casting and additive manufacturing (AM). In this work, three CALPHAD-based modeling approaches to estimate the homogenization time in order to dissolve the Laves_C14 phase into γ matrix are evaluated for Inconel 718 alloys made by suction casting and laser powder bed fusion. These values are compared with the homogenization at 1180 °C for different durations. The compositions of the γ matrix obtained from experiments are used as inputs for the first model. The first model involves single-phase diffusion simulations using the diffusion module (DICTRA) implemented in the Thermo-Calc software package with composition profile for the Laves_C14 phase either determined from experiments or calculated by the lever rule. The second model uses Scheil simulations for predicting the segregation profiles, which are used as inputs for single-phase simulations. In the third model, moving boundary simulations using DICTRA are performed using the composition of Laves_C14 phase from the lever rule. The homogenization time determined using the first model matches reasonably well with the experimental observation for the AM alloy. The second model is imprecise as the segregation from Scheil calculation is not reliable for AM alloy. The last model is inaccurate due to lack of mobility data for atomic diffusion in the Laves_C14 phase. The predicted homogenization times for the cast alloys using these models do not match with the experimental values. This necessitates the need for determining the mobilities for Laves_C14 phase for improving the accuracy of DICTRA simulations to estimate the homogenization time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. T.M. Pollock, and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propuls. Power., 2006, 22, p 361–374

    Article  Google Scholar 

  2. R. Cozar, and A. Pineau, Morphology of γ′ and γ′′ Precipitates and Thermal Stability of Inconel 718 Type Alloys, Metall. Trans., 1973, 4, p 47–59. https://doi.org/10.1007/BF02649604

    Article  Google Scholar 

  3. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Some Aspects of the Precipitation of Metastable Intermetallic Phases in INCONEL 718, Metall. Trans. A, 1992, 23, p 2015–2028. https://doi.org/10.1007/BF02647549

    Article  Google Scholar 

  4. C. Slama, and M. Abdellaoui, Structural Characterization of the Aged Inconel 718, J. Alloys Compd., 2000, 306, p 277–284. https://doi.org/10.1016/S0925-8388(00)00789-1

    Article  Google Scholar 

  5. C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, 510–511, p 289–294. https://doi.org/10.1016/j.msea.2008.04.097

    Article  Google Scholar 

  6. Z. Shi, J. Dong, M. Zhang, and L. Zheng, Solidification Characteristics and Segregation Behavior of Ni-Based Superalloy K418 for Auto Turbocharger Turbine, J. Alloys Compd., 2013, 571, p 168–177. https://doi.org/10.1016/j.jallcom.2013.03.241

    Article  Google Scholar 

  7. D.D. Keiser, and H.L. Brown, A Review of the Physical Metallurgy of Alloy 718. Idaho National Engineering Lab., Idaho Falls, 1976.

    Book  Google Scholar 

  8. V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze, Short Term Precipitation Kinetics of Delta Phase in Strain Free Inconel* 718 Alloy, Mater. Sci. Technol., 2004, 20, p 1019–1026. https://doi.org/10.1179/026708304225019830

    Article  Google Scholar 

  9. S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18, p 584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  10. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components, Int. Mater. Rev., 2013, 57, p 133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  11. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392. https://doi.org/10.1016/J.ACTAMAT.2016.07.019

    Article  ADS  Google Scholar 

  12. K. Kempen, E. Yasa, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel, Phys. Proc., 2011, 12, p 255–263. https://doi.org/10.1016/J.PHPRO.2011.03.033

    Article  ADS  Google Scholar 

  13. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60, p 2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032

    Article  ADS  Google Scholar 

  14. S. Raghavan, B. Zhang, P. Wang, C.N. Sun, M.L.S. Nai, T. Li, and J. Wei, Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy, Mater. Manuf. Process., 2017, 32, p 1588–1595. https://doi.org/10.1080/10426914.2016.1257805

    Article  Google Scholar 

  15. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2012, 513, p 518–523. https://doi.org/10.1016/j.jallcom.2011.10.107

    Article  Google Scholar 

  16. J. Strößner, M. Terock, and U. Glatzel, Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM), Adv. Eng. Mater., 2015, 17, p 1099–1105. https://doi.org/10.1002/adem.201500158

    Article  Google Scholar 

  17. Y. Zhao, K. Li, M. Gargani, and W. Xiong, A Comparative Analysis of Inconel 718 Made by Additive Manufacturing and Suction Casting: Microstructure Evolution in Homogenization, Addit. Manuf., 2020, 36, p 101404. https://doi.org/10.1016/j.addma.2020.101404

    Article  Google Scholar 

  18. X. Wang, X. Gong, and K. Chou, Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231, p 1890–1903. https://doi.org/10.1177/0954405415619883

    Article  Google Scholar 

  19. Q. Jia, and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties, J. Alloys Compd., 2014, 585, p 713–721. https://doi.org/10.1016/j.jallcom.2013.09.171

    Article  Google Scholar 

  20. T.G. Gallmeyer, S. Moorthy, B.B. Kappes, M.J. Mills, B. Amin-Ahmadi, and A.P. Stebner, Knowledge of Process-Structure-Property Relationships to Engineer Better Heat Treatments for Laser Powder Bed Fusion Additive Manufactured Inconel 718, Addit. Manuf., 2020, 31, p 100977. https://doi.org/10.1016/j.addma.2019.100977

    Article  Google Scholar 

  21. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai, Effects of Selective Laser Melting Additive Manufacturing Parameters of Inconel 718 on Porosity, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 735, p 182–190. https://doi.org/10.1016/j.msea.2018.08.037

    Article  Google Scholar 

  22. J. Smith, W. Xiong, W. Yan, S. Lin, P. Cheng, O.L. Kafka, G.J. Wagner, J. Cao, and W.K. Liu, Linking Process, Structure, Property, and Performance for Metal-Based Additive Manufacturing: Computational Approaches with Experimental Support, Comput. Mech., 2016, 57, p 583–610. https://doi.org/10.1007/s00466-015-1240-4

    Article  MATH  Google Scholar 

  23. J. Smith, W. Xiong, J. Cao, and W.K. Liu, Thermodynamically Consistent Microstructure Prediction of Additively Manufactured Materials, Comput. Mech., 2016, 57, p 359–370. https://doi.org/10.1007/s00466-015-1243-1

    Article  MATH  Google Scholar 

  24. G.D.J. Ram, A.V. Reddy, K.P. Rao, and G.M. Reddy, Microstructure and Mechanical Properties of Inconel 718 Electron Beam Welds, Mater. Sci. Technol., 2005, 21, p 1132–1138. https://doi.org/10.1179/174328405X62260

    Article  Google Scholar 

  25. J. Schneider, B. Lund, and M. Fullen, Effect of Heat Treatment Variations on the Mechanical Properties of Inconel 718 Selective Laser Melted Specimens, Addit. Manuf., 2018, 21, p 248–254. https://doi.org/10.1016/j.addma.2018.03.005

    Article  Google Scholar 

  26. D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, and W. Niu, Comparison of Microstructures and Mechanical properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting, Mater. Sci. Eng. A, 2018, 724, p 357–367. https://doi.org/10.1016/j.msea.2018.03.073

    Article  Google Scholar 

  27. G.D.J. Ram, A.V. Reddy, K.P. Rao, and G.M. Reddy, Improvement in Stress Rupture Properties of Inconel 718 Gas Tungsten Arc Welds Using Current Pulsing, J. Mater. Sci., 2005, 40, p 1497–1500. https://doi.org/10.1007/s10853-005-0590-2

    Article  ADS  Google Scholar 

  28. D. Zhang, W. Niu, X. Cao, and Z. Liu, Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy, Mater. Sci. Eng. A, 2015, 644, p 32–40. https://doi.org/10.1016/j.msea.2015.06.021

    Article  Google Scholar 

  29. T. Trosch, J. Strößner, R. Völkl, and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. https://doi.org/10.1016/j.matlet.2015.10.136

    Article  Google Scholar 

  30. D. Deng, J. Moverare, R.L. Peng, and H. Söderberg, Microstructure and Anisotropic Mechanical Properties of EBM Manufactured Inconel 718 and Effects of Post Heat Treatments, Mater. Sci. Eng. A, 2017, 693, p 151–163. https://doi.org/10.1016/j.msea.2017.03.085

    Article  Google Scholar 

  31. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzina, Impact of Heat Treatment on Mechanical Behaviour of Inconel 718 Processed with Tailored Microstructure by Selective Laser Melting, Mater. Des., 2017, 131, p 12–22. https://doi.org/10.1016/j.matdes.2017.05.065

    Article  Google Scholar 

  32. W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting Before and After Solution Heat Treatment, Mater. Sci. Eng. A, 2017, 689, p 220–232. https://doi.org/10.1016/j.msea.2017.02.062

    Article  Google Scholar 

  33. X. Huang, M.C. Chaturvedi, and N.L. Richards, Effect of Homogenization Heat Treatment on the Microstructure and Heat-Affected Zone Microfissuring in Welded Cast Alloy 718, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1996, 27, p 785–790. https://doi.org/10.1007/BF02648966

    Article  ADS  Google Scholar 

  34. C. Radhakrishna, and K.P. Rao, The Formation and Control of Laves Phase in Superalloy 718 Welds, J. Mater. Sci., 1997, 32(8), p 1977–1984. https://doi.org/10.1023/A:1018541915113

    Article  ADS  Google Scholar 

  35. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 639, p 647–655. https://doi.org/10.1016/j.msea.2015.05.035

    Article  Google Scholar 

  36. X. Li, J.J. Shi, C.H. Wang, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, and G.F. Chen, Effect of Heat Treatment on Microstructure Evolution of Inconel 718 Alloy Fabricated by Selective Laser Melting, J. Alloys Compd., 2018, 764, p 639–649. https://doi.org/10.1016/j.jallcom.2018.06.112

    Article  Google Scholar 

  37. A. Borgenstam, A. Engstro, L. Ho Lund, and J.A. Ren, Basic and Applied Research: Section I DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib., 2000, 21, p 269–280. https://doi.org/10.1361/105497100770340057

    Article  Google Scholar 

  38. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad Comput. Coupling Phase Diagr. Thermochem., 2002, 26, p 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  Google Scholar 

  39. P.D. Jablonski, and C.J. Cowen, Homogenizing a Nickel-Based Superalloy: Thermodynamic and Kinetic Simulation and Experimental Results, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2009, 40, p 182–186. https://doi.org/10.1007/s11663-009-9227-1

    Article  ADS  Google Scholar 

  40. Q. Chen, and B. Sundman, Computation of Partial Equilibrium Solidification with Complete Interstitial and Negligible Substitutional Solute Back Diffusion, Mater. Trans., 2002, 43, p 551–559. https://doi.org/10.2320/matertrans.43.551

    Article  Google Scholar 

  41. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9, p 671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  42. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9, p 153–190

    Article  Google Scholar 

  43. E. Scheil, Bemerkungen zur Schichtkristallbildung, Z. Metallkd., 1942, 34, p 70–72

    Google Scholar 

  44. G. Gulliver, The Quantitative Effect of Rapid Cooling Upon the Constitution of Binary Alloys, J. Inst. Met., 1913, 9, p 120–157

    Google Scholar 

  45. Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu, Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45, p 4470–4483. https://doi.org/10.1007/s11661-014-2370-6

    Article  ADS  Google Scholar 

  46. W. Huang, J. Yang, H. Yang, G. Jing, Z. Wang, and X. Zeng, Heat Treatment of Inconel 718 Produced by Selective Laser Melting: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2019, 750, p 98–107. https://doi.org/10.1016/j.msea.2019.02.046

    Article  Google Scholar 

  47. C.S. Smith, Grains, Phases, and Interfaces: An Introduction of Microstructure, Trans. Met. Soc. AIME, 1948, 175, p 15–51

    Google Scholar 

  48. R. Maldonado, and E. Nembach, The Formation of Precipitate Free Zones and the Growth of Grain Boundary Carbides in the Nickel-Base Superalloy NIMONIC PE16, Acta Mater., 1997, 45, p 213–224. https://doi.org/10.1016/S1359-6454(96)00139-5

    Article  ADS  Google Scholar 

  49. H.L. Chen, Q. Chen, and A. Engström, Development and Applications of the TCAL Aluminum Alloy Database, Calphad Comput. Coupling Phase Diagr. Thermochem., 2018, 62, p 154–171. https://doi.org/10.1016/j.calphad.2018.05.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support received from National Aeronautics and Space Administration (Grant Number: NNX17AD11G) for carrying out this research work. Authors acknowledge the support of the software and databases from the Thermo-Calc Software AB through the ASM Materials Genome Toolkit Award. We thank Dr. Qing Chen at the Thermo-Calc Software AB, Sweden, for the valuable discussion. The authors also thank Miss. Yinxuan Li for her assistance in sample preparation through the Mascaro Centre for Sustainable Innovation (MCSI) summer internship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on Additive Manufacturing. The issue was organized by Dr. Wei Xiong, University of Pittsburgh, and Dr. Greta Lindwall, KTH Royal Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridar, S., Zhao, Y. & Xiong, W. Phase Transformations During Homogenization of Inconel 718 Alloy Fabricated by Suction Casting and Laser Powder Bed Fusion: A CALPHAD Case Study Evaluating Different Homogenization Models. J. Phase Equilib. Diffus. 42, 28–41 (2021). https://doi.org/10.1007/s11669-021-00871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00871-3

Keywords

Navigation