Skip to main content
Log in

Nitrogen Solubility in Alloy Systems Relevant to Stainless Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-performance stainless steels are alloyed with nitrogen for several different reasons. For the austenitic grades, the kinetics of deleterious phase transformations are delayed, the strength is increased, and the corrosion resistance is improved. For duplex steels, the weldability and corrosion resistance depend directly on their nitrogen contents. Reliable databases are crucial for the development of new stainless steels and their processing. In order to calibrate the existing thermodynamic data, a series of experiments was undertaken. Several laboratory alloys in Fe–Cr–X systems, where X = Ni, Mn, Cu, were reacted with nitrogen gas at nitrogen activities 0.5 and 1 in the temperature range from 1050 °C to 1350 °C and subsequently analyzed for nitrogen solubility and phase constitution. A novel, simplified experimental technique was used, providing a dew point that is low enough to allow for fast nitrogen transport through the specimen surface, ensuring equilibrium conditions. The results are compared to thermodynamic equilibrium calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

  2. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. 1. G.F. Tisinai, J.K. Stanley, and C.H. Samans: JOM, 1954, vol. 6, pp. 1259–67.

    Article  CAS  Google Scholar 

  2. 2. H. Thier, A. Bäumel, and E. Schmidtmann: Arch. Eisenhüttenwes., 1969, vol. 40, pp. 333–39.

    Article  CAS  Google Scholar 

  3. 3. K. Bungardt, G. Lennartz, and R. Oppenheim: DEW Technische Berichte, 1969, vol. 7, pp. 71–89.

    Google Scholar 

  4. 4. H. Brandis, W. Heimann, and E. Schmidtmann: TEW-Technische Berichte, 1976, vol. 2, pp. 150–66.

    CAS  Google Scholar 

  5. 5. H. Laddach, G. Lennartz, and G. Preis: DEW Technische Berichte, 1973, vol. 13, pp. 75–84.

    CAS  Google Scholar 

  6. 6. U. Heubner, M. Rockel, and E. Wallis: Werkstoffe Korr., 1989, vol. 40, pp. 459–66.

    Article  CAS  Google Scholar 

  7. 7. R.F.A. Jargelius-Pettersson: ISIJ Int., 1996, vol. 36, pp. 818–24.

    Article  CAS  Google Scholar 

  8. M. Liljas and R. Qvarfort: Duplex Stainless Steels ‘86 Conf., 1986, pp. 244–56.

  9. J.-O. Andersson, A.F. Guillermet, S. Hertzman, M. Hillert, B. Jansson, B. Sundman, and J. Ågren: Calphad XI Conf., 1982.

  10. 10. H. Vannevik, J.-O. Nilsson, J. Frodigh, and P. Kangas: ISIJ Int., 1996, vol. 36, pp. 807–12.

    Article  CAS  Google Scholar 

  11. P.U. Hagenfelt, S.-O. Bernhardsson, and E.V.S. Lagerberg: U.S. Patent No. 4765953, 1988.

  12. 12. K. Lorentz and G. Médawar: Thyssenforschung, 1969, vol. 1, pp. 97–108.

    Google Scholar 

  13. 13. R.F.A. Jargelius-Pettersson: Corrosion, 1998, vol. 54, pp. 162–68.

    Article  CAS  Google Scholar 

  14. 14. M. Jarl: Scand. J. Met., 1978, vol. 7, pp. 93–101.

    CAS  Google Scholar 

  15. 15. S. Hertzman and M. Jarl: Metall. Trans. A, 1987, vol. 18A, pp. 1745–52.

    Article  CAS  Google Scholar 

  16. K. Frisk K: Metall. Trans. A, 1990, vol. 21A, pp. 2477–88.

  17. C. Qui: Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, 1993.

  18. 18. K. Frisk: Calphad, 1991, vol. 15, pp. 79–106.

    Article  CAS  Google Scholar 

  19. 19. B. Sundman, B. Jansson, and J.-O. Andersson: Calphad, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  20. 20. S. Wessman and R. Pettersson: Steel Res. Int., 2015, vol. 86, pp. 1339–49.

    Article  CAS  Google Scholar 

  21. 21. A. Malik, J. Odqvist, L. Höglund, S. Hertzman, and J. Ågren: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4914–28.

    Article  Google Scholar 

  22. 22. S. Hertzman, P. Ferreira, and B. Brolund: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 177–285.

    Google Scholar 

  23. 23. K.H. Jack: Scand. J. Metall., 1972, vol. 1, pp. 195–202.

    CAS  Google Scholar 

  24. R.F.A. Jargelius Pettersson, T. Ekman, S. Hertzman, T. Holm, and J. Linder: Mater. Sci. Technol., 1993, vol. 9, pp. 1123–32.

  25. W.B. Hutchinson: Swerim AB, Luleå, Sweden, personal comment.

  26. M. Khoda Karami and A. Kohanzadehmaranlou: Master’s Thesis, KTH Royal Institute of Technology, Stockholm, 2013.

  27. 27. Z. Jiang, H. Li, Z. Chen, Z. Huang, D. Zou, and L. Liang: Steel Res. Int., 2005, vol. 76, pp. 740–45.

    Article  CAS  Google Scholar 

  28. 28. N. Pettersson, S. Wessman, S. Hertzman, and A. Studer: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 156–271.

    Google Scholar 

  29. Y. Imai, T. Masumoto, and K. Maeda: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, 1967, vol. 19, pp. 35–49.

  30. 30. N. Suutala: Metall. Trans. A, 1982, vol. 13A, pp. 2121–30.

    Article  Google Scholar 

  31. 31 P. Johansson and M. Liljas: ACOM (Sweden), 2002, vols. 1–2, pp. 17–23.

    Google Scholar 

  32. 32. E. Westin, B. Brolund, and S. Hertzman: Steel Res. Int., 2006, vol. 77, pp. 473–81.

    Google Scholar 

  33. 33. S. Nana and M.B. Cortie: J. S. Afr. Inst. Min. Metall., 1993, vol. 93, pp. 307–15.

    CAS  Google Scholar 

  34. 34. J.-C. Bavay, S. Daboval, and M. Thomas: Stainless Steel 1991 Conf., 1991, pp. 93–98.

    Google Scholar 

  35. 35. S. Nana and M.B. Cortie: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2436–44.

    Article  CAS  Google Scholar 

  36. O. Smuk: Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, 2004.

  37. 37. O. Smuk, M. Selleby, and B. Bergman: Z. Metallkd., 2005, vol. 96, pp. 918–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experimental work was carried out within the project FROST – Tools for development of stainless steels of the future, via Vinnova, Sweden’s Innovation Agency (Project No. 2013-03258). Also funding this project were Outokumpu Stainless AB, AB Sandvik Materials Technology, Thermo-Calc Software AB, and NOMAC Norwegian Material Center of Expertise AS also provided funding for this work. The Master’s thesis was funded by the Outokumpu Stainless Research Foundation and carried out at the KTH Royal Institute of Technology. The authors also gratefully acknowledge the experimental contributions to the nitriding experiments by Mr. Christer Eggertson, Swerim AB.

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sten Wessman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 12, 2021; accepted May 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertzman, S., Naraghi, R., Wessman, S. et al. Nitrogen Solubility in Alloy Systems Relevant to Stainless Steels. Metall Mater Trans A 52, 3811–3820 (2021). https://doi.org/10.1007/s11661-021-06343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06343-0

Navigation