Skip to main content

Advertisement

Log in

Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal behavior investigation of CuNiCoZnAl high-entropy alloy powder produced by mechanical alloying indicated that a FCC single-phase solid solution transformed into two new phases at 500 °C. Despite this phase transformation, no indication of intermetallic compounds or amorphous phases was detected. Heat treatment of the high-entropy alloy was then carried out for 2 hours, and the nanocrystalline structure of heat-treated milled powder was retained up to 1000 °C. Besides, grain growth of CuNiCoZnAl high-entropy alloy powder at high homologous temperatures (> 0.6 Tm) was studied, and sluggish grain growth of the powder was observed clearly. Consolidation of the alloy powder was performed by spark plasma sintering at 800 °C, and a sample with porosity of 6.87 pct and density of 7.32 g cm−3 was achieved. Elastic moduli, Vickers microhardness, and fracture toughness of the bulk sample were measured as 186 ± 17 GPa, 599 ± 31 HV, and 4.45 MPa m0.5, respectively. The evaluation of wear behavior indicated that the dominant wear mechanism was adhesive wear. Moreover, tribochemical wear (oxidation) was found to be the minor wear mechanism. The present study revealed that CuNiCoZnAl high-entropy alloy has the potential to be used in many applications that high hardness and low elastic moduli are favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    CAS  Google Scholar 

  2. [2] N. Liu, W. Ding, X.J. Wang, C. Mu, J.J. Du, L.X. Liu, Metall. Mater. Trans. A, 2020, https://doi.org/10.1007/s11661-020-05751-y

    Article  Google Scholar 

  3. A.S.M. Ang, Ch.C. Berndt, M.L. Sesso, A. Anupam, P.S.R.S. Kottada, B.S. Murty, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 791-800.

    Google Scholar 

  4. [4] B.S. Murty, J.W. Ye, S. Ranganathan: High entropy alloys, 3rd ed, Elsevier, London, 2014.

    Google Scholar 

  5. X.W. Qiu, J. Alloys Compd., 2013, vol. 555, pp. 246-249.

    CAS  Google Scholar 

  6. S. Praveen, B.S. Murty, R.S. Kottada, Mater. Sci. Eng. A, 2012, vol. 534, pp. 83-89.

    CAS  Google Scholar 

  7. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, Y. Wang, C. Wang, Q.J. Zhang, J. Alloys Compd, 2009, vol. 485, pp. L31-L34

    CAS  Google Scholar 

  8. [8] Z. Lyu, Ch. Lee, Sh.Y. Wang, X. Fan, J.W. Yeh, P.K. Liaw, Metall. Mater. Trans. A, 2018, https://doi.org/10.1007/s11661-018-4970-z.

    Article  Google Scholar 

  9. I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, I. Dlouhy, Mater. Des, 2017, vol. 119, pp. 141-150.

    CAS  Google Scholar 

  10. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia, Acta. Mater, 2016, vol. 107, pp. 59-71.

    CAS  Google Scholar 

  11. L. M. Gouvea, I. Moravcik, M. Omasta, J. Vesely, J. Cizek, P. Minarik, J. Cupera, A. Zaděra, V. Jan, I. Dlouhy, Mater. Charact., 2020, vol. 159, pp. 110046.

    Google Scholar 

  12. [12] J. Miao, T. Guo, J. Ren, A. Zhang, B. Su, J. Meng, Vacuum. 2018 https://doi.org/10.1016/j.vacuum.2018.01.012.

    Article  Google Scholar 

  13. S. Kumar, D. Kumar, O. Maulik, A.K. Pradhan, V. Kumar, A. Patniak, Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5607–18.

    Google Scholar 

  14. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, A. Govind, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4532-4541.

    Google Scholar 

  15. C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, J. Alloys Compd, 2014, vol. 583, pp. 162-169

    CAS  Google Scholar 

  16. R. Sriharitha, B.S. Murty, R.S. Kottada, J. Alloys Compd, 2014, vol. 583, pp. 419-426.

    CAS  Google Scholar 

  17. S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, J. Alloys Compd. 2016, vol. 662, pp. 361-367.

    CAS  Google Scholar 

  18. J. Cheng, D. Liu, X. Liang, B. Xu, Acta. Metall. Sin. Engl. Lett., 2014. vol. 6, pp. 27.

    Google Scholar 

  19. Z. Cai, X. Cui, Z. Liu, Y. Li, M. Dong, G. Jin, Opt. Laser. Tech, 2018, vol. 99, pp. 276-281.

    CAS  Google Scholar 

  20. L. Jiang, Y. Lu, W. Wu, Z. Cao, T. Li, J. Mater. Sci. Technol, 2016, vol. 32, pp. 245–250.

    CAS  Google Scholar 

  21. P. Wang, P. Cai, S. Zhou, L. Xu, J. Alloys Compd, 2017. vol. 695, pp. 462-475.

    CAS  Google Scholar 

  22. S. Varalakshmi, G.A. Rao, M. Kamaraj, B.S. Murty, J. Mater. Sci., 2010, vol. 45, pp. 5158-5163.

    CAS  Google Scholar 

  23. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, R.P. Liu, Intermetallics, 2016, vol. 70, pp. 82-87.

    CAS  Google Scholar 

  24. R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Acta. Mater, 2017, vol. 125, pp. 58-68.

    CAS  Google Scholar 

  25. X. Liu, H. Cheng, Z. Li, H. Wang, F. Chang, W. Wang, Q. Tang, P. Dai, Vacuum, 2019, vol. 165, pp. 297–304.

    CAS  Google Scholar 

  26. H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, P. Dai, J. Alloys Compd., 2019, vol. 775, pp. 742-751.

    CAS  Google Scholar 

  27. L.R. Kanyane, A. P. Popoola, N. Malatji, Results Phys., 2019, vol. 12, pp. 1754–1761.

    Google Scholar 

  28. P. Chauhan, S. Yebaji, V. N. Nadakuduru, T. Shanmugasundaram, J. Alloys Compd., 2020, 10.1016/j.jallcom.2019.153367.

    Article  Google Scholar 

  29. A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, I. Bogomol, J. Alloys Compd., 2019, vol. 786, pp. 139-148.

    CAS  Google Scholar 

  30. Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li, J. Yang, J. Mater. Sci. Technol., 2019, vol. 35, pp. 2600–2607.

    Google Scholar 

  31. F. Jiang, C. Zhao, D. Liang, W. Zhu, Y. Zhang, S. Pan, F. Ren, Mater. Sci. Eng. A, 2020, vol. 771, pp. 138625.

    CAS  Google Scholar 

  32. [32] P. Parameswaran, A.M. Rameshbabu, V. Vijayan, G.S. Kumar, C. Sakthivel, N. Pargunam, A.G. Antony, Metal. Powder. Report, 2019, https://doi.org/10.1016/j.mprp.2019.0

    Article  Google Scholar 

  33. X. Ji, C. Ji, J. Cheng, Y. Shan, S. Tian, Wear, 2018, pp. 178–82.

  34. Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, W. Liu, J. Mater. Sci. Technol., 2016, vol. 32, pp. 470–476.

    CAS  Google Scholar 

  35. S. Varalakshmi, M. Kamaraj, B.S. Murty, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2703-2709.

    CAS  Google Scholar 

  36. S. Mohanty, N.P. Gurao, K. Biswas, Mater. Sci. Eng. A, 2014, vol. 617, pp. 211-218.

    CAS  Google Scholar 

  37. F. Salemi, M.H. Abbasi, F. Karimzadeh, J. Alloys Compd., 2016, vol. 685, pp. 278-286.

    CAS  Google Scholar 

  38. C.B. Ponton, R.D. Rawlings, Mater. Sci. Technol., 1989, vol. 5, pp. 865-872.

    Google Scholar 

  39. [39] P.J. Blau: ASM handbook of Friction, Lubrication and Wear Technology, ASM International, Novelty, 1992.

    Google Scholar 

  40. [40] B.D. Cullity: Stock SR, Elements of X-ray diffraction, third ed, Pearson, Upper Saddle River, 2001.

    Google Scholar 

  41. [41] D.R. Lide: Handbook of chemistry and physics, 84th ed, CRC, New York, 2004.

    Google Scholar 

  42. H. Celik, E. Aldirmaz, I. Aksoy, GUJ Sci., 2012, vol. 25, pp. 337-342.

    Google Scholar 

  43. [43] M. Wagner: Thermal analysis in practice: fundamentals aspects, Hanser, Munich, 2018.

    Google Scholar 

  44. Y.X. Zhuang, H.D. Xue, Z.Y. Chen, Z.Y. Hu, J.C. He, Mater. Sci. Eng. A, 2013, vol. 572, pp. 30-35.

    CAS  Google Scholar 

  45. Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Mater. Des, 2013, vol. 44, pp. 535-539.

    CAS  Google Scholar 

  46. S. Fang, W. Chen, Zh. Fu, Mater. Des., 2014, vol. 54, pp. 973-979.

    CAS  Google Scholar 

  47. B. Niu, W. Ji, N. Li, F. Zhang, Y. Wu, Mater. Sci. Technol., 2016, vol. 32, pp. 94-98.

    CAS  Google Scholar 

  48. H. Prasad, S. Singh, B.B. Panigrahi, J. Alloys Compd., 2017, vol. 692, pp. 720-726.

    CAS  Google Scholar 

  49. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, V. Kumar, Intermetallics, 2016, vol. 77, pp. 46-56.

    CAS  Google Scholar 

  50. N.T.B.N. Koundinya, C.S. Babu, K. Sivaprasad, P. Susila, N.K. Babu, J. Baburao, J. Mater. Eng. Perform., 2013, vol. 22, pp 3077-3084.

    CAS  Google Scholar 

  51. C. Suryanarayana, Prog. Mater Sci., 2001, vol. 46, pp. 1-184.

    CAS  Google Scholar 

  52. H.F. Sheng, M. Gong, L.M. Peng, Mater. Sci. Eng. A, 2013, vol. 567, pp. 14-20.

    CAS  Google Scholar 

  53. Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, Intermetallics, 2015, vol. 66, pp. 67-76.

    CAS  Google Scholar 

  54. C. Sajithbabu, N.T.B.N. Koundinya, K. Sivaprasad, J.A. Szpunar, Procedia. Mater. Sci., 2014, vol. 6, pp. 641-647.

    Google Scholar 

  55. C. Sajithbabu, K. Sivaprasad, V. Muthupandi, J.A. Szpunar, Procedia Mater. Sci, 2014, vol. 5, pp. 1020-1026.

    Google Scholar 

  56. R.S. Ganji, K.V. Rajulapati, K.B.S. Rao, Trans. Indian Inst. Met. 2020. 10.1007/s12666-020-01875-2

    Article  Google Scholar 

  57. [57] W. Luo, Y. Liu, Y. Luo, M. Wu, J. Alloys Compd, 2018, https://doi.org/10.1016/j.jallcom.2018.04.270.

    Article  Google Scholar 

  58. A. Zhang, J. Han, J. Meng, B. Su, P. Li, Mater. Lett., 2016, vol. 181, pp. 82–85.

    CAS  Google Scholar 

  59. [59] H. Baker: ASM handbook of properties and selection: nonferrous alloys and special-purpose materials, Cleveland, ASM International, 1990.

    Google Scholar 

  60. Z. Fu, W. Chen, S. Fang, D. Zhang, H. Xiao, D. Zhu, J. Alloys Compd., 2013, vol. 553, pp. 316-323.

    CAS  Google Scholar 

  61. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, J. Alloys Compd, 2010, vol. 495, pp. 33-38.

    CAS  Google Scholar 

  62. X.W. Qiu, C.X. Huang, M.J. Wu, C.G. Liu, Y.P. Zhang, J. Alloys Compd, 2016, vol. 658, pp. 1-5.

    CAS  Google Scholar 

  63. H. Khanchandani, P. Sharma, R. Kumar, O. Maulik, V. Kumar, Adv. Powder Technol, 2016, vol. 27, pp. 289-294.

    CAS  Google Scholar 

  64. Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, W. Liu, J. Mater. Sci. Technol., 2016, vol. 32, pp. 470-476.

    CAS  Google Scholar 

  65. B. Zahmatkesh, M.H. Enayati, F. Karimzadeh, Mater. Des, 2010, vol. 31, pp. 4891-4896.

    CAS  Google Scholar 

  66. [66] J. Takadoum: Materials and surface engineering in tribology pp. 1-89, John Wiley, New York, 2008.

    Google Scholar 

  67. Y. Mazaheri, F. Karimzadeh, M.H. Enayati, J. Mater. Sci. Technol., 2013, vol. 29, pp. 813-820.

    CAS  Google Scholar 

  68. D.Y. Lin, N.N. Zhang, B. He, G.W. Zhang, Y. Zhang, D.Y. Li, J. Iron. Steel. Res. Int., 2017, vol. 24, pp. 184-189.

    Google Scholar 

  69. Z. Yazdani, F. Karimzadeh, M.H. Abbasi, A. Amini, Trans. Indian. Inst. Met., 2015, vol. 68, pp. 927-934.

    CAS  Google Scholar 

  70. H. Ait-Sadi, L. Hemmouche, L. Hattali, M. Britah, A. Iost, N. Mesrati, Tribology. Int., 2015, vol. 90, pp. 372-385.

    CAS  Google Scholar 

  71. H.F. Sun, C.M. Wang, X. Zhang, R.Z. Li, L.Y. Ruan, Mater. Res. Innov., 2015, vol. 19, pp. 89-93.

    Google Scholar 

  72. M. Jafari, M.H. Enayati, M.H. Abbasi, F. Karimzadeh, Mater. Des, 2010, vol. 31, pp. 663-669.

    CAS  Google Scholar 

  73. C. Huang, Y.Z. Tang, Y.Z. Zhang, A.P. Dong, J. Tu, L.J. Chai, Z.M. Zhou, Rare Met., 2017, pp. 1–7.

  74. E. MohammadSharifi, F. Karimzadeh, M.H. Enayati, Mater. Des., 2011, vol. 32, pp. 3263-3271.

    CAS  Google Scholar 

  75. L. Jiang, W. Wu, Z. Cao, D. Deng, T. Li, J. Therm. Spray Technol., 2016, vol. 25, pp. 806-814.

    CAS  Google Scholar 

Download references

Conflict of interest

No potential conflict of interest was reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Salemi or F. Karimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 30, 2020; accepted February 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemi, F., Karimzadeh, F. & Abbasi, M.H. Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering. Metall Mater Trans A 52, 1947–1962 (2021). https://doi.org/10.1007/s11661-021-06205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06205-9

Navigation