Skip to main content
Log in

Hot tearing characteristics of Mg–2Ca–xZn alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Influence of Zn content (0, 0.5, 1.5, 4 and 6 wt%) on the hot tearing characteristics of Mg–2 wt% Ca alloy was investigated. The constrained rod casting (CRC) apparatus equipped with a load cell and data acquisition system was used. The initiation of hot tearing was monitored during solidification. The effect of mould temperatures (250 and 450 °C) on the hot tearing was also investigated. The formed tears were evaluated using X-ray tomography and the tear volumes were measured. Results show that hot tearing susceptibility (HTS) of Mg–2Ca–xZn (x = 0, 0.5, 1.5, 4 and 6 wt%) alloys increases with increase in Zn content up to 1.5 wt%, then decreases with further increase in the Zn content to 6 wt%. Higher initial mould temperature (450 °C) improves the hot tearing resistance. The observations on the microstructures and the fracture surfaces suggest that the hot tear initiated at the grain boundaries and propagated along them through the thin liquid film rupture and liquid metal embrittlement of solid bridges. Tear healing by low melting point eutectic liquid is also observed in some of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D’Elia F, Ravindran C, Sediako D (2015) Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy. Mater Sci Eng A 624:169–180

    Article  Google Scholar 

  2. Easton MA, Gibson MA, Zhu SM, Abbott TB (2014) An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys. Metall Mater Trans A 45:3586–3595

    Article  Google Scholar 

  3. Cao G, Zhang C, Cao H, Chang YA, Kou S (2010) Hot-tearing susceptibility of ternary mg-al-sr alloy castings. Metall Mater Trans A 41:706–716

    Article  Google Scholar 

  4. Eskin DG, Suyitno Katgerman L (2004) Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mater Sci 49:629–711

    Article  Google Scholar 

  5. Sweet L, Easton MA, Taylor JA et al (2013) Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents. Metall Mater Trans A 44:5396–5407

    Article  Google Scholar 

  6. Cao G, Kou S (2006) Hot cracking of binary Mg–Al alloy castings. Mater Sci Eng A 417:230–238

    Article  Google Scholar 

  7. Zhen Z, Hort N, Huang YD, Petri N, Utke O, Kainer KU (2009) Quantitative determination on hot tearing in Mg-Al binary alloys. Mater Sci Forum 618–619:533–540

    Article  Google Scholar 

  8. Zhou L, Huang YD, Mao PL, Kainer KU, Liu Z, Hort N (2011) Influence of composition on hot tearing in binary Mg–Zn alloys. Int J Cast Met Res 24:170–176

    Article  Google Scholar 

  9. Wang Z, Huang YD, Srinivasan A, Liu Z, Beckmann F, Kainer KU, Hort N (2013) Hot tearing susceptibility of binary Mg–Y alloy castings. Mater Design 47:90–100

    Article  Google Scholar 

  10. Srinivasan A, Wang Z, Huang Y, Beckmann F, Kainer K, Hort N (2013) Hot tearing characteristics of binary Mg-Gd alloy castings. Metall Mater Trans A 44:2285–2298

    Article  Google Scholar 

  11. Gunde P, Schiffl A, Uggowitzer PJ (2010) Influence of yttrium additions on the hot tearing susceptibility of magnesium–zinc alloys. Mater Sci Eng A 527:7074–7079

    Article  Google Scholar 

  12. Wang Z, Song J, Huang YD, Srinivasan A, Liu Z, Kainer K, Hort N (2015) An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions. Metall Mater Trans A 46:2108–2118

    Article  Google Scholar 

  13. Cao G, Kou S (2006) Hot tearing of ternary Mg-Al-Ca alloy castings. Metall Mater Trans A 37:3647–3663

    Article  Google Scholar 

  14. Cao G, Haygood I, Kou S (2010) Onset of hot tearing in ternary Mg-Al-Sr alloy castings. Metall Mater Trans A 41:2139–2150

    Article  Google Scholar 

  15. Zhou L, Huang YD, Mao PL, Kainer KU, Liu Z, Hort N (2011) Investigations on hot tearing of Mg-Zn-(Al) alloys. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (eds) Magnesium technology. Wiley, Hoboken, pp 125–130

    Google Scholar 

  16. Wang Y, Wang Q, Wu G, Zhu Y, Ding W (2002) Hot-tearing susceptibility of Mg–9Al–xZn alloy. Mater Lett 57:929–934

    Article  Google Scholar 

  17. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR (2013) Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf Coat Tech 222:79–89

    Article  Google Scholar 

  18. Zhang B, Hou Y, Wang X, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C 31:1667–1673

    Article  Google Scholar 

  19. Zhang B, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. In: Pignatello R (ed) Biomaterials—physics and chemistry. InTech, Rijeka, pp 183–204

    Google Scholar 

  20. Gao X, Zhu SM, Muddle BC, Nie JF (2005) Precipitation-hardened Mg–Ca–Zn alloys with superior creep resistance. Scripta Mater 53:1321–1326

    Article  Google Scholar 

  21. Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y (2010) Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A 527:4250–4256

    Article  Google Scholar 

  22. Somekawa H, Mukai T (2007) High strength and fracture toughness balance on the extruded Mg–Ca–Zn alloy. Mater Sci Eng A 459:366–370

    Article  Google Scholar 

  23. Levi G, Avraham S, Zilberov A, Bamberger M (2006) Solidification, solution treatment and age hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn alloy. Acta Mater 54:523–530

    Article  Google Scholar 

  24. Nie JF, Muddle BC (1997) Precipitation hardening of Mg-Ca(-Zn) alloys. Scripta Mater 37:1475–1481

    Article  Google Scholar 

  25. Tong LB, Zheng MY, Xu SW et al (2011) Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A 528:3741–3747

    Article  Google Scholar 

  26. Gao JH, Guan SK, Ren ZW, Sun YF, Zhu SJ, Wang B (2011) Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater Lett 65:691–693

    Article  Google Scholar 

  27. Song J, Wang Z, Huang YD, Srinivasan A, Beckmann F, Kainer KU, Hort N (2015) Hot tearing susceptibility of Mg-Ca binary alloys. Metall Mater Trans A 46:6003–6012

    Article  Google Scholar 

  28. Powell BR, Luo AA, Tiwari BL, Rezhets V (2002) The die castability of calcium-containing magnesium alloys: thin-wall computer case, Magnesium Technology 2002. TMS, Warrendale, pp 123–129

    Google Scholar 

  29. Song J, Wang Z, Huang YD, Srinivasan A, Beckmann F, Kainer KU, Hort N (2015) Effect of Zn addition on hot tearing behaviour of Mg–0.5Ca–xZn alloys. Mater Design 87:157–170

    Article  Google Scholar 

  30. Zhen Z, Hort N, Utke O, Huang YD, Petri N, Kainer KU (2009) Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method. In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MO (eds) Magnesium technology. Wiley, Hoboken, pp 105–110

    Google Scholar 

  31. D’Elia F, Ravindran C, Sediako D, Kainer KU, Hort N (2014) Hot tearing mechanisms of B206 aluminum–copper alloy. Mater Design 64:44–55

    Article  Google Scholar 

  32. Eskin DG, Katgerman L (2007) A quest for a new hot tearing criterion. Metall Mater Trans A 38:1511–1519

    Article  Google Scholar 

  33. Clyne TW, Davies GJ (1979) Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition. Solidification and casting of metals. Metals Society, London, pp 275–278

    Google Scholar 

  34. Wang Z, Huang Y, Srinivasan A, Liu Z, Beckmann F, Kainer K, Hort N (2014) Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. J Mater Sci 49:353–362. doi:10.1007/s10853-013-7712-z

    Article  Google Scholar 

  35. Eskin DG, Suyitno Mooney JF, Katgerman L (2004) Contraction of aluminum alloys during and after solidification. Metall Mater Trans A 35:1325–1335

    Article  Google Scholar 

  36. Suyitno Eskin DG, Savran VI, Katgerman L (2004) Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metall Mater Trans A 35:3551–3561

    Article  Google Scholar 

  37. Eskin DG, Savran VI, Katgerman L (2005) Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metall Matrt Trans A 36:1965–1976

    Article  Google Scholar 

  38. Suyitno Eskin DG, Katgerman L (2006) Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting. Mater Sci Eng A 420:1–7

    Article  Google Scholar 

  39. Huang YD, Wang Z, Srinivasan A, Kainer KU, Hort N (2012) Metallurgical characterization of hot tearing curves recorded during solidification of magnesium alloys. Acta Phys Pol A 122:497–500

    Google Scholar 

  40. Huang H, Fu P, Wang Y, Peng L, Jiang H (2014) Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Trans Nonferr Met Soc 24:922–929

    Article  Google Scholar 

  41. Pellini WS (1952) Strain theory of hot tearing. Foundry 80:125–199

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Petra Fischer, Mr. Guenter Meister, Mr. Gert Wiese for their technical supports. Financial support from China Scholarship Council for this work is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Wang, Z., Huang, Y. et al. Hot tearing characteristics of Mg–2Ca–xZn alloys. J Mater Sci 51, 2687–2704 (2016). https://doi.org/10.1007/s10853-015-9583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9583-y

Keywords

Navigation