Skip to main content
Log in

Effect of MgO on Phase Structure and Evolution of Steelmaking Slag During Cooling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The underutilization of steelmaking slags is primarily ascribed to instability, predominantly influenced by their intricate phase structure. The presence of MgO, a key constituent in steelmaking slag, contributes to the challenges faced in steelmaking slag recycling and sustainable steel production practices. There are currently uncertainties surrounding the impact of fluctuations in MgO content on the mineral phase of steelmaking slag, as well as ongoing controversy regarding the influence of the RO phase on slag stability. This study investigates the phase evolution and microstructures of steelmaking slag with varying MgO contents during the cooling process through high-temperature experiments and FactSage thermodynamic equilibrium calculations. The principal phases in steelmaking slag, namely α′-Ca2SiO4 (C2S), RO (MgO–FeO solid solution), Ca2Fe2O5 (C2F) and Ca3SiO5 (C3S), were identified using XRD and SEM-EDS analyses. As the MgO content increases, the MgO content within the RO continued to increase. With a MgO content of 10 mass pct in steelmaking slag, the precipitation of C3S commences during the cooling of the steelmaking slag. The average size of C3S reaches up to 400 μm, markedly higher than the 35 μm size of C2S. This disparity is attributed to the higher nucleation rate of C2S compared to C3S, coupled with a lower growth rate. The augmentation of MgO content in steelmaking slag induces changes in the C3S formation, facilitated by the substitution of Ca2+ in C3S by Fe2+ and Mg2+.The significance of this work lies in unraveling the intricacies of steelmaking slag behavior, providing crucial insights for optimizing recycling processes. This research sheds light on the factors that influence the phase composition and stability of steelmaking slag, contributing to the utilization of steelmaking slags, promoting environmental sustainability, and bolstering the overall efficiency of metallurgical processes in the current industrial landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.L. Guo, Y.P. Bao, and M. Wang: Waste Manag., 2018, vol. 78, pp. 318–30.

    Article  PubMed  Google Scholar 

  2. Z.J. Wang and I. Sohn: J. Sustain. Metall., 2019, vol. 5, pp. 127–40.

    Article  Google Scholar 

  3. C. Du, X. Gao, and S. Kitamura: J. Sustain. Metall., 2019, vol. 5, pp. 141–53.

    Article  Google Scholar 

  4. M. Oge, D. Ozkan, M.B. Celik, M.S. Gok, and A.C. Karaoglanli: Mater. Today Proc., 2019, vol. 11, pp. 516–25.

    Article  CAS  Google Scholar 

  5. A.I. Al-Negheimish, F.H. Al-Sugair, and R.Z. Al-Zaid: J. King Saud. Univ., 1997, vol. 9, pp. 39–54.

    CAS  Google Scholar 

  6. M.Y. Benarchid, A. Diouri, A. Boukhari, J. Aride, and I. Elkhadiri: Mater. Chem. Phys., 2005, vol. 94, pp. 190–94.

    Article  CAS  Google Scholar 

  7. G. Wang, Y.H. Wang, and Z.L. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555–60.

    Article  CAS  PubMed  Google Scholar 

  8. A.S. Brand and J.R. Roesler: Cem. Concr. Compos., 2018, vol. 86, pp. 117–29.

    Article  CAS  Google Scholar 

  9. F. Wachsmuth, J. Geiseler, W. Fix, K. Koch, and K. Schwerdtfeger: Can. Metall. Q., 1981, vol. 20, pp. 279–84.

    Article  CAS  Google Scholar 

  10. K. Nakase, A. Matsui, N. Kikuchi, and Y. Miki: ISIJ Int., 2017, vol. 57, pp. 1197–204.

    Article  CAS  Google Scholar 

  11. I. Akinwumi: Period. Polytech Civ. Eng., 2014, vol. 58, pp. 371–77.

    Article  Google Scholar 

  12. C.J. Shi: J. Mater. Civ. Eng., 2004, vol. 16, pp. 230–36.

    Article  CAS  Google Scholar 

  13. H.F. Yu, X. Lu, T. Miki, K. Matsubae, Y. Sasaki, and T. Nagasaka: Resour. Conserv. Recycl., 2022, vol. 180, 106203.

    Article  CAS  Google Scholar 

  14. M.A. Tayeb, A.N. Assis, S. Sridhar, and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1112–14.

    Article  Google Scholar 

  15. I.Z. Yildirim and M. Prezzi: Adv. Civ. Eng., 2011, vol. 2011, pp. 1–3.

    Article  Google Scholar 

  16. Z.M. Chen, R. Li, X.M. Zheng, and J.X. Liu: Cem. Concr. Res., 2021, vol. 139, 106271.

    Article  CAS  Google Scholar 

  17. M.S. Tang, M.Q. Yuan, S.F. Han, and X. Shen: J. Chin. Ceram. Soc., 1979, vol. 7, pp. 35–46.

    CAS  Google Scholar 

  18. Q. Wang and P.Y. Yan: Constr. Build. Mater., 2010, vol. 24, pp. 1134–40.

    Article  Google Scholar 

  19. X. Liu, D.Z. Wang, Z.W. Li, W. Ouyang, Y.P. Bao, and C. Gu: J. Mater. Res. Technol., 2023, vol. 23, pp. 2362–70.

    Article  CAS  Google Scholar 

  20. G.R. Qian, D.D. Sun, J.H. Tay, and Z.Y. Lai: Br. Ceram. Trans., 2002, vol. 101, pp. 159–64.

    Article  CAS  Google Scholar 

  21. C. Li, J.T. Gao, Z.C. Guo: 7th International Symposium on High-Temperature Metallurgical Processing, TMS, 2016, pp. 85–86

  22. W. Fix, H. Heymann, and R. Heinke: J. Am. Ceram. Soc., 1969, vol. 52, pp. 346–47.

    Article  CAS  Google Scholar 

  23. S.H. Ma, W.Q. Zhou, S.P. Wang, W.F. Li, and X.D. Shen: Phase Transit., 2015, vol. 88, pp. 888–96.

    Article  CAS  Google Scholar 

  24. A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon, and E.D. Cubuk: Nature, 2023, vol. 624, pp. 80–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473–88.

    Article  CAS  Google Scholar 

  26. X. Zhang, B. Xie, J. Diao, and X.J. Li: Ironmak. Steelmak., 2012, vol. 39, pp. 147–54.

    Article  Google Scholar 

  27. K.A. Jackson, The Interface Kinetics of Crystal Growth Processes, Kluwer Academic Publishers. Netherlands, 2002, pp. 175–99.

  28. J.C. Li, G.X. Li, F. Qiu, R. Wang, J.S. Liang, Y. Zhong, D. Guan, J.W. Li, S. Sridhar, and Z.S. Li: Int. J. Miner. Metall. Mater., 2023, vol. 30, pp. 378–87.

    Article  CAS  Google Scholar 

  29. K.C. Mills and S. Sridhar: Ironmak. Steelmak., 1999, vol. 26, pp. 262–68.

    Article  CAS  Google Scholar 

  30. W.W. Xuan, S. Guhl, Y.Q. Zhang, J.S. Zhang, and B. Meyer: Ceram. Int., 2022, vol. 48, pp. 28291–98.

    Article  CAS  Google Scholar 

  31. S.A. D’Souza, S. Banik, H.B. Vuthaluru, and S.V. Pisupati: Fuels, 2021, vol. 2, pp. 37–47.

    Article  Google Scholar 

  32. W. Huang and Y. Liu: ISIJ Int., 2020, vol. 60, pp. 2183–90.

    Article  CAS  Google Scholar 

  33. J. Diao, W. Zhou, P. Gu, Z.Q. Ke, Y. Qiao, and B. Xie: CrystEngComm, 2016, vol. 18, pp. 6272–81.

    Article  CAS  Google Scholar 

  34. D.L. Ye and J.H. Hu: Practical Inorganic Thermodynamic Data Handbook, 2nd ed. Metallurgical Industry Press, Beijing, 2002, pp. 217–21.

    Google Scholar 

  35. M.C. Weinberg, D.P. Birnie, and V.A. Shneidman: J. Non-Cryst. Solids, 1997, vol. 219, pp. 89–99.

    Article  CAS  Google Scholar 

  36. G. Ruitenberg, E. Woldt, and A.K. Petford-Long: Thermochim. Acta, 2001, vol. 378, pp. 97–105.

    Article  CAS  Google Scholar 

  37. M. Fanfoni and M. Tomellini: Il Nuovo Cimento D, 1998, vol. 20, pp. 1171–82.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Chongqing, China (cstc2022ycjh-bgzxm0003). The China Scholarship Council (CSC) is gratefully acknowledged for providing one of the authors (Wen-Feng Gu) with a scholarship as a visiting PhD student (Registered Number: 202206050118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Diao or Hua-Fang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In this model, the steelmaking slag compositions are classified into three categories: glass formers (XG); modifiers (XM), and amphoterics (XA).

$$ X_{G} = X_{{{\text{SiO}}_{2} }} + X_{{{\text{P}}_{2} {\text{O}}_{5} }} $$
(A1)
$$ X_{M} = X_{{{\text{CaO}}}} + X_{{{\text{MgO}}}} + X_{{{\text{FeO}}}} + X_{{{\text{MnO}}}} + 2X_{{{\text{TiO}}_{2} }} $$
(A2)
$$ X_{{\text{A}}} = X_{{{\text{Al}}_{2} {\text{O}}_{3} }} + X_{{{\text{Fe}}_{2} {\text{O}}_{3} }} $$
(A3)

The model assumes Weymann–Frenkel relation

$$ \eta = {\text{AT}}\exp \left( {\frac{{10^{3} B}}{T}} \right) $$
(A4)
$$ - \ln A = 0.29B + 11.57 $$
(A5)

where A and B are composition dependent parameters. The parameter B can be expressed by the third-order polynomial equation (A6), where B0, B1, B2 and B3 can be obtained by equations (A7) through (A10).

$$ B = B_{0} + B_{1} X_{G} + B_{2} X_{G}^{2} + B_{3} X_{G}^{3} $$
(A6)
$$ B_{0} = 13.8 + 39.93545\alpha_{0} - 44.049\alpha_{0}^{2} $$
(A7)
$$ B_{1} = 30.481 + 117.1505\alpha_{0} - 129.9978\alpha_{0}^{2} $$
(A8)
$$ B_{2} = - 40.9429 + 234.0486\alpha_{0} - 300.04\alpha_{0}^{2} $$
(A9)
$$ B_{3} = 60.7619 - 153.9276\alpha_{0} + 211.161\alpha_{0}^{2} $$
(A10)
$$ \alpha_{0} = \frac{{X_{{\text{M}}} }}{{X_{{\text{M}}} + X_{{\text{A}}} }} $$
(A11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, WF., Diao, J., Lai, ZQ. et al. Effect of MgO on Phase Structure and Evolution of Steelmaking Slag During Cooling. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03116-z

Navigation